6ES7241-1AA22-0XA0千万库存
1.引言
(1)应用行业
产业用织物包括机织土工布、工业用呢和工业用网。这类织机具有特宽幅、超重型的特点,一般幅宽在4至18米之间,宽可达30米。国外只有少数几家公司能够生产特宽幅织机。研究特宽幅织机控制系统具有重要意义。研制的控制系统也适用于通用织机。
(2)使用的产品
特宽幅织机控制系统如图1所示。使用欧姆龙公司中大型——CS1系列PLC,包括PA209R(电源单元)、CS1H-CPU65H(CPU单元)、CP114(凸轮定位器单元)、CT041(高速计数器单元)、AD081-V1(模拟量输入单元)、DA08V(模拟量输出单元)、ID231(DC输入单元)、OD231(晶体管输出单元)、OC211(继电器输出单元)、INT01(中断输入单元)、ENT21(Ethernet单元)、CPU底板以及扩展底板等。
2.应用的主要工艺点及要解决的主要问题
系统由送经伺服控制系统、卷取控制系统、送经与卷取同步控制系统、织机启动/制动控制系统、测长及定长控制系统、液压投梭控制系统、引纬控制系统、单动多臂机构控制系统及自动润滑系统等组成。主要工艺点是特宽幅织机五大运动的协调运行和佳匹配。织机在织造过程中,对张力(包括经纱张力、织物张力、纬纱张力等)、速度(包括送经速度、卷取速度、提综速度、打梭棒打梭速度、引纬速度等)和各执行机构开始动作与结束动作的时间配合等要求很严格,若控制不当或彼此之间配合不好,将会影响产品的质量和生产效率,甚至会发生严重的生产事故,影响人身安全。
要解决的主要问题是实现各个部分在动态过程中的高精度协调运行,保证经纱张力、纬纱张力及织物张力符合工艺规定的数值。
3.应用方案简介
织机的控制系统包括10个控制子系统:
(1)送经控制系统;
(2)卷取控制系统;
(3)送经与卷取同步控制系统;
(4)织机的启动控制系统(包括正常启动、点动、投一梭、前心、后心、上轴);
(5)织机的制动控制系统(包括正常关车、断经自停、断纬自停、满匹停车、护经检测自停、紧急制动);
(6)测长及定长控制系统;
(7)液压投梭控制系统;
(8)引纬控制系统;
(9)单动多臂机构计算机控制系统;
(10)自动润滑系统。
计算机控制系统由IPC610H型工控机、CS1型可编程控制器(PLC)、SR93型智能调节器及触摸屏等组成。织机的运动控制、顺序控制和逻辑控制任务由CS1型可编程控制器来完成;温度和压力控制任务由SR93型智能调节器来完成。采用PWS6800C-P型触摸屏,用于工艺参数设定、变量数值显示、织机的开车、停车以及报警等。
4.应用方案详细介绍
4.1送经伺服控制系统(电子送经:ELO)
(1)送经伺服控制系统组成
送经伺服控制系统由经轴、减速器1、伺服电机1、伺服驱动器1、导辊、后梁、经纱张力检测、编码器、可编程控制器、工控机以及触摸屏等组成。其作用是:织机每引一纬,经轴送出定量的经纱,并给经纱以一定的张力,以满足开清梭口、打紧纬纱的要求,获得一定紧度和结构的织物。
(2)经轴退绕过程数学模型
为了有效地对经轴退绕过程进行控制,要建立退绕过程的数学模型。
经轴上经纱的转动惯量Jb为:
转矩平衡方程式为:
以上,式(1)~(13)描述了经轴退绕过程的动力学特征,为非线性、时变数学模型。
(3)经轴退绕伺服控制系统
针对退绕过程的数学模型来设计退绕伺服控制系统。控制策略包括经纱张力闭环控制、变增益(增益调度)、变积分时间常数控制、信号自适应控制和多模态控制。
张力闭环控制
根据式(10)、式(11)和式(13),经轴半径r1在退绕过程中是逐渐减小的,如果经轴角速度不变,则线速度V1也逐渐减小,导致每织一纬的送经量逐渐减少,造成经纱张力F逐渐增大,这是不允许的。为了使经纱张力稳定在设定值上,实现基础控制即张力闭环控制。
变增益、变积分时间常数控制
根据误差的大小自动改变增益值和积分时间常数,达到响应快、抑制超调和无稳态误差的目的,这就是智能控制的思路。由PLC实现变增益、变时间常数控制。为实现这种控制,在控制程序中应用BCMP(68)指令,将误差划分为16级,即16个范围,当误差落在某个范围内时,相应的位变为ON,则调出相应的增益值和积分时间常数。共有16个增益和16个积分时间常数可供自动调用,根据误差大小自动改变控制器的参数,从而稳定了经纱张力。
信号自适应控制
根据经轴的实际半径,即每当经轴退绕一层纱线,控制器就自动地改变控制输出,通过传动链使送经量保持在设定值上,这就是信号自适应控制。经轴半径信息由式(10)求得,退绕层数n1由编码器PG1的脉冲数经计算得到。在张力闭环控制的基础上,采用变增益、变积分时间常数和信号自适应控制,有效地减轻了张力闭环控制的负担,改善了系统的动态性能,稳定了经纱张力。
4.2卷取伺服控制系统(电子卷取:ETU)
卷取伺服控制系统由工控机、PLC、触摸屏、伺服驱动器2、伺服电机2、减速机2卷取辊、导辊、胸梁、张力传感器2以及编码器等组成,其任务是与主机旋转保持同步,变纬密自适应,卷取辊应提供足够的握持力,保证稳定地传送织物。
4.3送经与卷取同步控制
送经与卷取同步控制装置的作用是在织机运转过程中,保持jingque的纬密和恒定的经纱张力,也就是保证送经与卷取完全同步,并且与织机的主传动系统同步。
PLC读取经纱张力传感器信号、送经量编码器PG2信号、织物纬密传感器信号、织物张力传感器信号、主轴编码器PG3信号和卷取量编码器PG4信号,根据式(13),协调送经、开口和卷取伺服系统,保证经纱张力恒定和纬密jingque,并防止停车档产生。
4.4伺服系统的自整定
(1)常规自动增益整定(nominal gain auto-tuning)
按照预设定(内部设定)的模式使电机加速和减速,可从所需转矩计算负载的惯量,根据惯量自动地决定适当的增益。
(2)实时自动增益整定(real time gain auto-tuning)
在实际运行期间,实时地计算当时的负载惯量,自动地确定适当的增益,并根据负载的起伏及时地整定增益。在整定前要选择机械刚性。还要根据负载情况选择实时自动整定模式,分为负载惯量几乎不变化、负载惯量变化小和负载惯量变化快三种。实践证明,增益自整定显著地改善了伺服驱动器、伺服电机以及机械装置之间的匹配性能,缩短了系统的调试时间。
5.应用方案取得的效果
本项目已完成,特宽幅织机已投入生产运行,用户取得了明显的经济效益和社会效益。
6.应用方案的示范性
本文介绍的特宽幅织机控制系统的分析、设计及调整方法也适用于普通织机。
一、前言
在百页窗及简易办公桌等设施中,框架或边柱都采用铝型材加工完成;这些型材规格一旦确定以后用量一般都很大,为了提高生产效率及保证加工出来的产品一致性,相应的加工设备也应运而生;
随着自动化技术不断提升,人机界面及PLC成为了机械设备主要的控制核心,配合伺服系统实现操作自动化、位置闭环检测、速度跟踪等功能。
本文以汇川H2U系列高性能PLC控制系统为例介绍控制过程及效果;
二、 系统介绍
设备工艺流程为:放料¬、冲孔、成型、剪切四大部分组成;其中冲孔部分又分为单孔和四孔两种,根据不现规格选择;成型部分由变频器驱动电机通过模具压制而成;剪切部分只有一把剪刀,由于铝板很薄,通过气缸作为剪刀动力;
设备框图如下示:
该设备PLC采用汇川H2U—1616MT主机,主机本体带有3路100K的独立脉冲输出,分别驱动冲孔追踪伺服A、剪刀追踪伺服B及主机变频器MD280调速;编码器A作为冲孔部分的速度及位置检测源,编码器B作为剪刀部分的速度及位置检测源,分别接到PLC的双向高速计数端口;
硬件图纸如下示:
三、控制原理:
汇川PLC同一端口可作为速度检测及高速计数使用;检测出来的速度作为追踪伺服的移动速度,H2U系列PLC指令SPD2可以计算出每秒钟所产生的脉冲个数,并且自动适应负载速度的变化,响应快速灵敏准确,非常适合对速度或转速等检测的场合;高速计数器进行长度计数用于控制冲孔或剪刀的动作,汇川PLC双向高速计数可设为4倍频模式可提高计数精度,从而保证冲孔及剪切的位置精度;高速计数位置到达产生高速计数中断,在中断子程序中完成冲孔或剪刀气缸的动作,减少正常扫描周期所产生的精度误差;
动作流程框图:
部分梯形图:
汇川H2U系列PLC采用高性能主芯片,应用功能指令处理速度只需1微秒,保证程序的快速响应;配合独立于扫描周期的中断程序,则可以大限度减少控制部分的精度误差;
汇川AutoShop编程软件简单易用,采用欧式风格将主程序与各子程序分页书写,方便编程者思路清晰,易于对程序的修改及维护;
四、汇川PLC方案优势:
1、程序处理速度及中断响应速度快,保证控制精度;
2、速度检测及长度计数有方便指令,易于程序的实现;
3、具有3路100K脉冲输出,降低模拟量对变频器调速的成本;
4、高速计数具有4倍频功能,提高计数精度;
1 引言
(1) 三菱F系列变频器外部端子调速可分为模拟量调速和多段速调速
模拟量调速可用电压0~10VDC或电流4~20mADC,进行无级调速。本公司货架组件(横梁)冷弯设备机组便采用多段速闭环变频器调速控制系统;一般采用外部输入端子SD、STF、STR、RL、RM、RH,进行三段速调速。RL、RM、RH是低﹑中﹑高三段速速度选择端子,SD是输入公共端,STF是启动正转信号,STR是启动反转信号。当Y10,Y11有输出时,变频器为低速运行;当Y10,Y12有输出时,为中速运行;当Y10,Y13有输出时为高速运行。三段速分别设置为20Hz、30Hz、45Hz。在模拟量调速时,通过编程,三菱FX2N系列可编程控制器根据操作台发出的信号,选择控制方式:模拟量调速或多段速调速。其控制系统还可以通过DOS操作系统开发编程的微机作为上位机实现控制功能或结合触摸屏技术实现随机动态适时控制或结合触摸屏控制技术来操作控制实现有关功能。
(2) 三菱FX2N系列可编程控制器是小型化,高速度,高性能的产品,是FX系列中次的超小型程序装置。
本文探讨MELSEC FX2N-32MR在货架组件(横梁)冷弯机组中的应用特点。
2 系统构成
2.1 工艺流程
工艺流程如图1所示:
图1 货架冷弯成型工艺简图
根据货架组件(横梁)的冷弯成型孔型设计及冷弯成型工艺要求,货架组件(横梁)冷弯机组共有12站牌楼构成,钢卷料由站牌楼前的带料导引装置将钢带穿入冷弯机组进行冷弯成型加工,该冷弯机组主动力由22kW的三菱多功能矢量控制变频器和异步变频电机驱动系统构成,各牌楼间的动力传递可采用链传动或齿轮组来实现;主控系统选用MELSECFX2N-32MR可编程控制器,闭环控制反馈信号由1200p/r的旋转编码器被动测量提供信号开关量并测长,根据所选的编码器的线数以及要走的位置量,确定好对应的计测脉冲数,设置PLC,使其在计测到相应的脉冲数时产生相应的动作以实现产品定长切断的jingque控制,其基本长度控制精度可达±0.5mm以上,可重复长度控制误差分布范围大不超过1mm。
2.2 系统硬件结构的主要配置
(1) PLC选用是FX2N-32MR,外加FX2N-232-BD通信模块。各1只;
(2) 触摸屏选用型号为:GP37W2-BG41-24V,或采用微机控制上位机系统;
(3) KOYO旋转编码器TRD-NH1200-RZ及测量辊、24V开关电源,各1台;
(4) 三菱多功能矢量控制变频器:FR-A540-22K-CH变频器,1台;
(5) 三相笼型交流异步电动机:Y系列,4极,22kW,1台;
(6) 其它电气选配件。
3 电气闭环控制系统原理
3.1 无极闭环系统的控制原理
要实现货架组件(横梁)的冷弯成型机组的闭环无级控制,必须根据变频器和变频电机的特性,即:在一定载荷下变频器所存在的理想加速和减速特性曲线,或根据不同的品牌和规格的变频器的特性参考资料、冷弯机组加工件的负荷特性、电机的负荷特性等进行适时调整。基本控制原理如图2所示:
图2 系统闭环控制原理图
3.2 基本控制思想
(1)据旋转编码器测量反馈的当前速度信号适时调整变频器的输出驱动频率值,从而保证变频电机能以要求的速度平稳运行;其还表现在必须根据具体冷弯产品的成型工艺要求、负荷波动规律等选择相应的速度控制模式,即初时运动加速度与加速控制时间、平稳运行速度与距离、减速运动加速度与控制时间等进行变频器的适时调整,确保主机运行及控制反馈运行过程的平稳,消除不稳定形成的系统超差故障;
(2)据旋转编码器的脉冲测量数反馈当前冷弯机组主电机的位移信号及预先设定的控制方案适时调整变频器的输出驱动频率值,使变频电机先以较高的速度运行到接近冷弯产品控制切断长度的位置后将速度平稳降到较低的速度下工作,并在切断控制处准确制动停准,必要时可采取机械抱闸系统来辅助快速定位,再通过输出控制点发出切断控制信号实现液压停剪;PLC控制系统在工作过程中实时采集运行数据,并不断地与存放在软件控制数据块里的标准位置参数进行比较和控制决策,从而达到快速准确定位、提高作业效率的目的,并与监控系统交换工作信息以实现生产管理系统的全面动态管理。
4 负载机械特性和变频器的选型
该系统的电气拖动主要是驱动冷弯轧辊运动,其阻力矩TL取决于冷弯轧辊与钢卷料之间的摩擦力FL与冷弯轧辊半径r的乘积,即TL=FL×r。在这里,冷弯轧辊的半径r是恒定不变的,摩擦力FL的大小与相应的冷弯产品的孔型设计工艺水平、机组的传动效率和相关材料与轧辊间的摩擦系数等有关,与转速高低关系不大。这是典型的恒转矩负载机械特性。可初步选用三菱FR-A540系列变频器。
4.1 三菱FR-A540系列变频器具有的特性
(1)采用先进的磁通矢量控制。由于采用了精简指令集计算机RISC微处理芯片,使之具有全新的在线自动调整功能,使电机在不影响启动速度的情况下迅速得到调整。
(2)具有多段速度选择功能:它有高速RH、中速RM、低速RL、第二加/减速时间选择RT、漏型公共输入端SD等端子,可以通过PLC的输出点直接控制输入端子的ON/OFF状态来实现变频器速度的上升、下降和jingque停车。每档速度的大小可由变频器功能预置来设定。
(3)运用了三菱首创“柔性脉宽调制”(Soft-PWM)开关方式,实现更低噪音运行,并能减少对外射频干扰,有利于邻近的PLC、旋转编码器的可靠运行。
(4)调速范围:1:120(0.5Hz~60Hz运行时),且低频运行性能稳定可靠,采用自动调整后,可以在不同的品牌的电机上实现高精度运行。
4.2 变频器的选型
货架组件(横梁)冷弯机组的主要功耗包括:用于货架组件(横梁)弯曲变形功率、克服辊子与工件之间的摩擦阻力及辊子轴承摩擦阻力、克服机组传动阻力及功率损耗,一般采用经验测算方法与简单公式计算后放大倍数的方法共同核算,通常还根据冷弯成型的成功案例进行类比测算,并依此确定具体型号变频器的实际功率。
综合多种因素,笔者选定了三菱FR-A540-22kW-CH变频器。经试验证明:针对货架组件(横梁)的冷弯成型机组采用PGL板反而会出现较大的定位误差,故取消了PGL板设计,仅利用变频器的多段速选择和FR-A540的高性能来实现货架组件(横梁)的冷弯成型的定位控制。
5 外部接口设计
三菱FX2N型PLC内置多个高速计数器。经过测量测试,选择采用两相两计数输入、应答频率为30kHz的C251计数器,将旋转编码器的A、B输出端与PLC的X0、X1输入点相连,可以稳定地捕捉货架组件(横梁)冷弯机组上加工产品所需要的闭环控制反馈信号,实现冷弯产品的加工长度、位置定位后的程序比较及控制信号的输出,实现冷弯产品的定长液压停剪动作。机组大运行速度限制计算为:测量辊周长与应答频率为30kHz的乘积再除旋转编码器的每转脉冲数,如我司选用的测量辊直径为Φ60mm,周长为188.5mm,则每秒大运动位移为:
188.5mm×30000÷1200=4.1725m
远远满足货架组件(横梁)冷弯机组的大运行速度在20m/min的要求。
FX2N-32MR的输出点的外部接线方式为分组式,有COM0~COM3共4个COM点与16个输出点对应,可以灵活地选择输出点的电源形式。
用PLC编写一条32位的高速计数器区间比较复位指令DHSZ,用触摸屏对PLC数据寄存器D赋值,数值以理论脉冲数为基准增减,再与C251记录的编码器脉冲数进行比较,当两个数据相等时,PLC指令变频器和电机停机。经反复赋值试验,可以找到jingque的编码器脉冲总数。按照速度控制规律的各段分配脉冲数,以指导PLC适时向变频器发出速度切换指令。试验时电机采用低速运行,脉冲数或实际长度换算数以实际记录为准。
加速/减速时间的设置是变频器参数设置的关键。冷弯机组遵循加速-运行-减速-低速运行正反转调整-停止为一个运行周期,每一周期中的间隔是冷弯产品的切断过程及系统动作复位。合理设置这些参数,可以调整定位运行的切断控制精度及机组生产效率,使它适合负荷的要求。
6 结束语
PLC+变频器控制实现的多段速系统控制确保了货架冷弯机组的自动化控制要求,具有运行稳定可靠,定位精度高等特点。实践也证明FR-A540-22kW变频器完全满足货架冷弯机组的调速和基本定位控制要求,提高了生产效率。此种PLC+变频器控制方式也可用于其他需要速度配合及定位控制的电机变频调速系统。
根据今后货架冷弯机组的自动化发展方向,将成型速度的设定与控制理论的发展与应用、成型辊辊型设定与实时调节、具体机械设备的故障诊断的处理与显示等与具体的PLC控制功能和发展相结合,必然能促进货架冷弯机组的自动化发展水平。