西门子6ES7223-1PL22-0XA8千万库存
4.3 制粉系统
4.3.1 工艺介绍
制粉系统主要包括埋刮板机系统、磨煤机系统、稀油站系统、液压站系统、主引风机系统、布袋收粉器系统。其中埋刮板机可以从上位机控制,也可以从设备带来的PC控制。
4.3.2 控制功能介绍
① 入磨一次风量调节:由操作人员根据实际观察的结果,手动调节相应阀的开度。
② 开车顺序:开主引风机→开布袋收尘器→开磨煤机(操作回路动作)→开给煤机,停车顺序与开车顺序
4.4 喷吹系统
4.4.1 工艺介绍
喷吹系统主要是及时向高炉输送煤粉,每座高炉都设计有两个喷吹罐,细煤粉利用自重从煤粉仓落到喷吹罐中,并用空气充压。当一个喷吹罐装满煤粉并充压到压力设定值后,即准备喷煤(作为待用罐);当另一个正在喷吹的喷吹罐(操作罐)一旦喷空时,待用罐就与煤粉输送管道接通,在一个短暂的过渡时间后,喷空的操作罐开始卸压,装煤粉和再充压的另一个循环。
4.4.2 控制功能介绍
生产过程中重要的参数均能随时进行调节,通过PID 回路控制,使之维持在设定值左右,所有的PID 回路都可以进行PV跟踪,无扰动切换。所有进行监视和调节的参数,我们均可在工艺画面中显示出来,使操作人员易于观察和调节。调节回路有三种工作方式:自动,半自动和手动。
自动:由 PLC 自动调节阀门开度
半自动:由操作人员直接在画面上调节阀门开度
手动:由操作人员用手操器操作阀门开度,画面上跟踪此阀门开度
4.4.2.1 喷吹罐罐压自动调节
为了保证喷吹量的稳定,须保持喷吹罐内压力的稳定。通过调节补压调节阀的开度可保持罐压在设定值。补压设定值在罐压调节画面设定,与罐压实测值比较运算后输出补压调节阀的开度。系统调节回路及相应的自动程序框图分别如图2和图3 所示。
图2 罐压调节回路
图3 喷吹罐罐压自控程序框图
4.2.2 喷吹量控制
在一定的喷吹压力下稳定流化氮气量,压缩空气补气量的变化改变输煤阻力和固气比,此功能只需人工设定喷吹率设定值和罐压,喷吹率调节是通过调节补气调节阀来调节,补气调节阀根据采样数据,将设定喷吹率与实际喷吹率相比较,当设定值〉实际值时,将阀位开大,当设定值〈实际值时,将阀位开小。计算机自动时,补气liuliang调节阀的开度小限制为8℅;计算机手动时,程序上无此限制,但操作时不应小于此值。控制回路及其相应程序框图如图4和图5 所示。
图4 喷水量控制回路
图5 程序框图
4.2.3 阀门控制
该方式下,须在满足联锁保护条件和阀门开关顺序的情况下操作。
① 罐压卸至零压时,下钟阀方可进行开动作;
② 上出料阀关到位后,才能打开卸压阀;
③ 向高炉送煤时,必须先开补气支阀,才能进行给煤阀开动作。
5 结束语
九羊钢铁喷煤系统在半年多的时间里由设计到施工顺利结束,按目前无烟煤400 元/吨计算,现有生铁生产能力60 吨,每生产1吨铁可喷煤150 kg,年需喷煤9 万吨,每100 kg 无烟煤可等同80 kg 冶金焦,年可替代冶金焦7.2 万吨。按目前冶金焦1000 元/吨计算,可节约资金3 600 万元,效益非常可观。
引言
由于能源价格的上涨,使得吨铁成本上升,九羊公司内部挖潜改造、降低成本的空间已到极限,为了完成公司制定的产量目标和成本目标,必须采取新的措施来增产降耗,高炉喷煤配合富氧,则可大幅度地tigao生铁产量、降低生铁成本,喷煤技术改造对我公司的发展具有非常重要的意义。
高炉喷吹煤粉是世界炼铁正在迅速发展的一项重大技术,其目的是在高炉冶炼过程中,扩大高炉燃料来源,从风口向高炉喷吹煤粉,以价格低的煤粉替代价格昂贵的冶金焦,改善高炉的操作条件;增加高炉的调剂手段;终达到节焦增产的目的。
在当前能源紧张的形势下,必须采取措施大力节约和替代焦炭。炼铁生产降低焦炭的途径很多:如改进原料质量、tigao风温、改善操作、降低铁水含硅量、加强管理等。但从效果上看扩大高炉喷吹煤粉,以煤代焦乃是降低焦炭消耗的有效措施。扩大高炉喷煤是当务之急,符合钢铁工业长远规划。
1 山东九羊钢铁公司炼铁喷煤现状
山东九羊钢铁公司铁厂现有128 m3、350 m3、420 m3三座高炉,按年生产日为355 天,则年产铁为110万吨。九羊高炉喷煤设计按混合喷吹无烟煤、并罐喷吹系统设计,并联罐的优点:①罐系统出现故障,可三个罐轮流喷煤;②倒罐较易实现自动控制;③厂房低,投资小;并联罐的缺点:①倒罐瞬间中断喷吹;②输粉切断阀开关频繁,寿命短。
2 设计原则
九羊高炉制煤、喷煤自动检测控制系统的设计遵循先进性与实用性相结合的原则,充分考虑到满足设备控制要求,完善测量功能,在检测元件选型方面适应制煤、喷煤工艺气粉混合测量和煤粉易燃爆的特点,具有测量准确、维护量小、防爆、使用寿命长等优点。高炉喷煤系统主要由制粉系统和喷煤系统两部分组成。两部分可以单独运行,互不影响。
3 控制原理和硬件结构
3.1 硬件配置
该工程采用S7-300 系列可编程控制器,SIEMENS系统是具有快速处理能力的专用计算机系统,是模块化、可扩展的体系结构,是用于工业和制造过程实时控制,具有体积小、内存大、处理速度快、组态灵活和便利用户支持的特点,在支持新技术的tigao了性能价格比。
3.2 软件配置
运用STEP7 V5.2 软件对PLC 系统组态编程,STEP7 V5.2 既可以进行复杂的仪控,又可以进行常规的电气控制。
画面监控软件选用WinC C 6.0软件,该软件操作简单,能够动态显示工艺过程参数,并可设置重要参数的历史趋势、实时趋势、报警等。
3.3 控制系统的通信网络
该网络结构包括两套PLC 系统:制粉系统、高炉喷煤系统。每个控制系统通过以太网进行数据传输和现场设备的控制。在喷煤控制室,设4台上位机,其中原煤储运、烟气炉、制粉共用一台上位机;128 高炉、350 高炉、420 高炉喷吹各一台上位机,各上位机、PLC之间通过交换机互联。该网络结构可以为将来联网做准备,交换机预留光纤口,通过光线实现数据的透明化,具有不可比拟的优越性。其网络结构如图1所示。
4 工艺及控制功能介绍
4.1 原煤储运系统
该系统包括受料斗A、受料斗B、振动给煤机A、振动给煤机B、电磁除铁器、转运皮带机、大倾角皮带机、振动筛,主要负责向原煤仓上煤,操作人员根据原煤仓需煤量的情况开启设备:依次启动振动筛、大倾角皮带机、转运皮带机、电磁除铁器、振动给煤机A或振动给煤机B,设备停止顺序与启动顺序
4.2 烟气炉系统
4.2.1 工艺介绍
该系统为制粉系统提供干燥原煤和输送煤粉的干燥气,干燥气为烟气炉燃烧煤气产生的热气体。为了保证磨煤系统所需的一次风量31 000~53800Nm3/h,入口温度180~250℃的混合干燥气。热空气,经一台主引风机吸送至磨煤机用以干燥原煤和输送煤粉。为了保证磨煤系统所需的一定温度、一定liuliang的一次混合干燥气,使出口温度处于规定值内,并通过磨煤机出口温度变化情况控制和调节磨煤机入口的一次风调节阀、掺冷风调节阀的开度。
4.2.2 控制功能
① 当高炉煤气压力高于高定值或低于低定值时,由操作人员计算机手动调节阀门开度;
② 冷空气调节系统,根据中速磨所需热风的温度的高低混兑冷空气,由操作人员计算机调节阀门开度
1.前言
斗轮堆取料机,是大型散装物料装卸机械,广泛用于港口、矿山、钢厂、电厂等大宗散料如矿石、煤、砂石等在存储料场的堆放、提取作业,其工作连续性强,操作频繁。斗轮堆取料机传统的开关量顺序控制,是采用继电器和接触器构成的逻辑控制装置,这种传统的控制装置能在一定的范围内满足自动控制的需要,但因需要大量的触点装置和电缆使其控制线路过于繁复、可靠性差和维修难度大。PLC以其稳定的性能、低廉的成本、强大的功能及方便的编程等特点广泛应用于工业控制领域。
本文采用西门子触摸屏TP270,西门子 S7-300 可编程控制器, Profibus-DP ( 分布式I/O) 控制机上的各执行机构。控制网络简单, 系统优化,完全满足机上的各执行机构的控制要求。
2.TP270触摸屏组态
SimaticTP270具有价格低廉、坚固耐用、结构紧凑、显示清晰、组态简单高效等优点,TP270的引入能够大大减少司机室内的仪表盘、指示灯、数码管等从而减少设备间的布线,使运行更加可靠,使设计人员能够根据实际情况灵活改变显示内容与方式,大大tigao了整机的控制性能和水平。
本文采用ProtoolV6.0进行触摸屏画面组态,根据斗轮机设备需要及特性,画面设计总体分为一个主画面、六个子画面,其逻辑关系如图1所示:
子画面共分为四大类:一是画面操作部分(在触摸屏上操作设备的运行、停止、堆料、取料等);二是各设备状态显示(显示各设备到位位置及运行状态)及数据显示部分(显示机上各电机运行电流、行车、回转、变幅位置数值);三是故障显示及故障报警列表、历史报警列表(显示各设备故障指示及故障查询)等;四是系统设定,在不退出程序的提提下,以方便对触摸屏本身各参数的设置。
部分PT画面如图2、图3所示:
组态程序编写完毕,用编程器为TP270下载程序时,要注意设定TP270的传送通道及传送波特率,考虑到下载速度,本例中波特率设置为115200。
3.系统组成及通讯
3.1系统硬件配置
根据斗轮堆取料机的控制要求,结合目前运用成熟的总线技术,系统采用Profibus总线技术。系统由Profibus-DP网络和MPI网络共同组成。Profibus是一种开放式异步通信标准,可以实现各种自动化设备之间的数据交换,由3个兼容部分组成,即Prof ibus-DP、Profibus-PA和Prof ibus-FMS。Profibus-DP是一种开放式现场总线系统,实现快速响应和高速数据通信,用于设备级控制系统与分散式I/O的通信。Profibus-DP主站周期性地读取从站的输入信息并周期性地向从站发送输出信息,除周期性用户数据传输外,提供职能化设备所需的非周期性通信以进行组态、诊断和报警处理。采用RS485传输技术,物理传输介质为双绞线、双线电缆或光缆,波特率从9.6k~12Mbit/s。主战间为令牌方式传送,主战与从站为主-从传送,支持单主或多主系统。
MPI是一个多点接口通讯网络,多可连接125个MPI节点,通讯速率为187.5kbit/s。可以在不同的控制器之间传输数据,还可以作为一个Profibus-DP接口使用,操作员控制和监视设备HMI及编程设备PG可通过两种接口(MPI、Profibus-DP)连接。
根据斗轮堆取料机电气控制系统的特点,分别在上部电气室和下部电气室配备Profibus-DP主站和从站,触摸屏设置在司机室,以方便司机操作及故障查询。上部电气室选用西门子S7-300CPU315-2DP可编程控制器作为主站,CPU315-2DP本机具有1个MPI接口和1个DP接口,从站设在下部电气室,从站I/O模块选用ET200M,选用IM153-1通讯接口模块。大车行走、悬臂变幅及回转机构通过变频器来控制,变频器作为从站通过CBP2通讯板(Profibus通讯模块)连接在系统总线上。系统硬件配置如图4所示:
3.2系统硬件组态
PLC编程软件采用西门子SIMATIC STEP7V5.4。启动软件后,进行硬件组态,选中SIMATIC300(1),双击右边窗口中的“硬件”图标,组态其硬件。将所选CPU和各输入、输出模块插入SIMATICS7网络,并定义各模块I/O地址。依次将IM153-1、变频器挂到Profibus网络,设置PLC 为主站其地址为( 2) ,ET200M为从站,其地址设置为( 3) (注意设定地址须和ET200M硬件上拨码数字相同) , 行走变频器, 回转变频器,变幅变频器地址分别设置为( 4) ( 5) ( 6) 。变频器的从站地址必须与PROFIBUS 主站上配置的地址相一致,且总线上每个单元的地址必须是唯一的PLC 主站中的用户程序存取, 经过总线系统的通讯是完全由PLC主站中的主接口和IM153-1接口进行处理。PLC 主站将数字量信号通过PROFIBUS-DP 总线经PROFIBUS模块传送至变频器, PROFIBUS 模块安装在变频器的正面,通过RS485串行接口与变频器通讯。其配置图如图5所示:
4.斗轮堆取料机的PLC控制
4.1堆料程序控制
在堆料PLC 半自动控制程序中,将大车预制在预定堆煤位置, 通过可编程终端画面上的堆料控制参数设定,设定堆料时悬臂架的变幅次数M1次和悬臂架回转次数M2次。启动堆料程序, 则悬臂胶带、尾车胶带在程序的控制下顺序逻辑启动,给系统发出斗轮堆料作业信号并实现与系统胶带按堆料工况联锁。堆料机在堆料位自动运行状态堆料,随着物料的堆积,料堆逐渐升高,当物料碰到斗轮机上的物料开关时,悬臂上升一个高度,如此为上升设定的M1次。悬臂左回转一个角度, 重复以前堆料,直至回转设定M2次。大车后退一段距离, 悬臂向右回转M2 倍角度,堆料M1次、回转M2次。大车再后退, 重复工作,实现斗轮堆取料机的堆料PLC控制作业。其控制流程图如图6所示:
4.2取料程序控制
在取料PLC控制程序中,将大车开至预定取料位置。当接到系统取料指令和系统胶带取料运行后, 启动取料程序, 则悬臂胶带、斗轮在程序控制下顺序逻辑启动,通过回转角度式光电编码器分别进行取料初始角和取料终止角的角度采样, 传送和存贮, 确定悬臂回转的取料范围。则悬臂回转取料左转、右转时,分别与取料初始角和取料终止角进行比较, 每相等1 次, 大车继续前进一段距离, 悬臂再左右回转取料, 直至N1 次。大车后退N1倍距离到初始位置, 悬臂下降一段距离,开始第二层取料, 工艺与层同理; ⋯⋯直至取完N2 层。N1的设置应为奇数才能实现全料层循环。其控制流程图如图7所示:
4.3信号、仪表指示监控
信号、仪表指示监控是靠PLC与电压互感器可编程终端之间的通讯实现的, 并组成可编程序终端辅助监控的斗轮堆取料机操作系统。采用可编程终端, 斗轮堆取料机的状态信号,报警信号和仪表指示信号进入电压互感器可编程终端系统, 可对斗轮堆取料机进行实时监控, 方便、准确、快捷,免去了盘式指示灯、仪表配线的繁琐, 丰富了显示功能。
5 结束语
斗轮堆取料机采用PLC控制具有故障率低、抗干扰性好、可靠性高、 运行稳定等优点,而PROFIBUS- DP 总线的引入,能够节省大量的控制电缆及安装费用,安装简单,维护方便。PLC在工作期间,现场设备出现故障,能快速通过触摸屏查找并显示故障,方便维护人员检修设备,缩短了故障处理时间,由于控制电缆用量的减少,有效地降低了由控制电缆引发的各类故障,大大tigao了斗轮堆取料机运行可靠性,取得了良好的运行效果,能够给企业带来良好的经济效益。