西门子模块6ES7211-0AA23-0XB0使用说明
1引言
生产饮料筒、油漆筒(桶)、机油筒(桶)等薄板类金属容器的道工序就是把厚为0.2~0.5mm、宽为320~1200mm的卷板按所生产容器的不同剪成不同长度的板料,送到下面的工序,如套色印花、焊接、胀型、封口(底)等终成型。由于后面的工序,特别是套色印花工序对长度偏差的要求甚高,为±0.25mm/1000mm(对角线偏差为±0.4mm/1000mm),单位时间的剪切数量较高,一般不少于50/min,普通的剪切设备达不到上述要求。有经济实力的大型企业从国外进口生产线,这种生产线从板料的开卷、校平、定尺剪切到终成型,由工控计算机作上位机,控制多台PLC,既由计算机根据动作需要向PLC写入或读出数据,达到控制整条生产线的目的。这种生产线结构复杂,价格昂贵。对于中小企业,我们研制了一种仅需1台PLC控制的、结构简单、造价低廉、剪切精度和剪切产量达到和超过上述要求的高精度定尺剪切系统。
图1 剪切系统结构示意图2 硬件构成
点击此处查看全部新闻图片
剪切系统的结构示意如图1所示。由图1可见,系统的机械部分由夹送机构和剪切机构两部分组成:夹送机构由交流伺服电机驱动旋转,上下夹送辊的加紧力调至刚好压紧板料,使板料在两辊中按设定的速度无滑动滚动;剪切机构与一般剪床同,只是剪切的驱动力来自高压气体。
系统的电气控制部分采用日本光洋的SU系列可编程序控制器;包括SU-5M(CPU模块),U-01SP单轴伺服定位控制摸块;U-05N16点DC12/24V输入模块;U-01T8点AC220V继电器输出模块等;人机界面为CL-02DS液晶汉字显示设定单元。伺服系统采用日本安川的交流伺服电机SGMGH-20ADA61和SGDM-20AD数字交流伺服驱动器。
3定尺剪切控制
3.1控制原理
在手动状态(板料安装)时,夹送辊可作正反2个方向转动。在自动工作情况下,夹送辊的转动方向如图1所示。若确定单位脉冲的移动量和编码器每转一圈的脉冲数,当夹送辊的直径一定时,夹送辊每转一定的角度或圈数,板料的移动长度也就确定了。当PLC检测到伺服电机反馈的脉冲数达到所设定的目标值(既长度)时,PLC发出信号,交流伺服电机停止转动,方向控制阀的电磁铁通电,气缸执行剪切动作。剪切机构的每一次剪切使接近开关获得1个脉冲,此脉冲即可计算剪切数量,又能作为下1个循环的开始信号。
3.2参数设置
(1)一般参数的设置
a)主轴转速(自动运转时,下同)的确定:确定主轴的转速要兼顾2个方面,一是生产能力,二是转动惯性。转速不是越快越好,太快,转动惯性大,达不到jingque停止的要求,剪切长度精度不高;当然,慢了,达不到生产力的要求。
b)脉冲当量的确定:在本例中,之能进行高精度定尺剪切,实际上就是jingque的控制夹送辊每个脉冲转动的角度(脉冲当量)。当夹送辊直径一定时,它转过一定的角度,就对应转过一定的弧长,既为板料移动的长度。从理论上说,脉冲当量越小,剪切长度精度越高,但对控制系统的要求也越高,不经济。一般情况下,脉冲当量比加工精度高一个数量级即可。
c)脉冲编码器反馈的每转脉冲数(分周比)的确定:脉冲当量确定以后,这个参数就好确定了。设计时,夹送辊的直径已定,则其周长也已确定。只要用主动辊的周长除以脉冲当量,即为脉冲编码器反馈的每转脉冲数。该数应为整数,当得数为小数时,与脉冲当量一同作一些调整即可。应注意的是确定的脉冲编码器反馈的每转脉冲数必须在所选的脉冲编码器大的每转脉冲数范围之内。
图2 剪切系统程序框图
点击此处查看全部新闻图片
d)伺服驱动器工作模式:速度控制模式。
(2)智能模块的参数选择
U-01SP智能模块的参数共有21个,主要参数有:
a)设定的主轴转速时智能模块发出的脉冲频率FBF:U-01SP智能模块与数字式交流伺服驱动器配合使用,可以在交流伺服电机额定的转速内任意设定,这个设定值就是FBF:
FBF(kHz)=主轴转速(RPS)×脉冲编码器反馈的每转脉冲数(PPR)
该参数必须在智能模块的大FBF范围之内。
b)主轴手动速度的确定:根据手动安装板料的需要,一般设定为主轴转速的10%~20%。
c)加、减速时间,即主轴从0转速到额定转速(或)所需要的时间:主要根据剪切的板长确定,剪切的板长较短时,该时间可短些,可长些。对于本例,可选500~1000ms。
d)紧急停止时间,在自动运转时,从额定转速到停止转动的时间:当系统发生意
外时,控制系统需急停,以减少对系统和机器的损伤。该时间可少些,一般选500ms以内。
其余参数可用该模块出厂时的原设定值或根据需要设定。
3.3程序设计
这里使用的SU-5M型PLC与大多数型号的中型PLC在程序设计上并无大的差异,由于采用了语言编程,更接近计算机的流程图设计思路。特别需要指出的是U-01SP单轴伺服定位控制模块采用类似数控CNC系统的G语言,编程方便、功能强大。
举例:G00X(位置值)F(速度值);代表一个典型的阶梯形定位指令。
单轴伺服定位控制模块U-01SP的控制信号通过模块所占I/O定义号对应,程序设计思路如图2所示。
(1)PLC上电后,进行初始化处理:把为系统建立的参数表从CPU写入智能模块U-01SP、检查系统有无错误、数据有无错误、语法有无错误,检查结果判断为正常时,系统进入伺服准备状态,这其中包括进入到动作方式(手动、自动)选择、数据监控状态(伺服数据读出)、伺服异常(数据出错、系统出错、语法出错)处理完毕状态。
(2)在手动状态下,按下主轴正、反转按钮,主轴
可驱动板料前进、后退;按下手动剪切按钮,剪去板头。此状态一般在新安装板料时使用,手动剪切不计数。
(3)在自动状态下,料批(剪切长度、剪切张数)在人机对话装置CL-02DS液晶设定显示单元上设定完毕后(实际上料批可在PLC上电后任意动作方式下设定),CL-02DS将料批数(十进制数)转换成BCD数,存入到CPU的指定寄存器中,程序根据已确定的脉冲当量进行计算,转换成脉冲数,再将脉冲数变换成BIN数,存入到U-01SP内的指定目标寄存器而成为目标值。人机对话装置CL-02DS进入监控状态。按下自动剪切按钮,主轴开始转动,每次转动的周长就是目标值的脉冲数与脉冲当量的乘积。到了目标值后主轴停止,气缸执行剪切动作,剪刀回位的计量剪切张数,重复上次操作。直至达到剪切张数的目标值后停止。
由于圆周率的存在和转动惯性,主轴每次转过的实际周长与应该转过的周长还会有一点差异,很小,在1mm以内,但对于±0.25mm的长度精度还有影响,这样,在程序中按需要设定几个尺寸段进行一定数量的脉冲补偿(分段补偿),终完全达到了剪切长度精度要求。
4 结束语
适当改变脉冲当量、夹送辊直径和脉冲编码器反馈的每转脉冲数,剪切精度可tigao一个数量级;剪切动作换成液压缸执行,能剪厚板,可用于机械、汽车等其它行业。该系统已在济南、深圳等地投入使用,经过近一年的运行,剪切长度精度、剪切速度完全达到设计要求和用户要求,系统运行情况良好。该产品填补了我省空白,现已通过技术鉴定,正批量生产
一、概述
汽车转向泵是一种中汽车用的零部件,它为汽车动力转向系统提供一种高性能的动力源,与发动机转速相配合可以产生卓越的转速liuliang特性从而使得驾驶舒适。由采埃孚转向泵金城有限公司投资的转向泵自动装配线项目位于南京新港经济技术开发区,主要生产轿车和轻型商务车用的转向泵。这种汽车部件由多个零件组成,需要借助不同的设备,按照一定的工序将它们组装起来。在整个过程中,需要对装配时的压力、位移和时间等参数进行实时监控,以满足严格的工艺要求,保证装配质量。汽车转向泵自动装配线是完成上述工序的一组设备,它共有12个工位,以实现不同的装配功能,其生产流程如图1所示。
图1 汽车转向泵自动装配线生产流程图
系统的控制对象包括气液增力缸式压机﹑夹具﹑压力/位移监控仪﹑密封测试仪﹑综合功能测试仪和智能螺栓拧紧系统等,由于各个工位间相互独立且有一定距离,各采用一台西门子PLC作为控制器,一台SIMODRIVER611A伺服驱动器及1FT5伺服电机用于旋铆工位的分度盘旋转台控制,另有两台MicroMaster系列MMV37变频器用于生产线的物料传输系统。表1列出了该装配线使用的西门子S7-PLC型号及其在各个工位的分布。
表1 装配线使用的主要PLC产品
图2 生产厂房和装配线中的一个工位图。
二、系统要求
现以工位WS1.1为例,介绍设备的工作过程。该工位将滚针轴承压入端盖,当按下启动按钮后,设备先检测轴承放置的方向,如果正确,夹具自动锁紧,启动压装过程,否则系统报警,压机不工作,OP3操作面板显示错误信息。压装开始后,系统启动CoMoII-S智能测量仪表,对压力和位移进行监测,若整个过程的压力/位移曲线满足工艺要求(位于一定的范围内),则装配合格,绿色指示灯亮,压机退回,夹具松开,零件可转入下道工序,否则红色指示灯亮,结果不合格,系统复位后,零件经确认后转入废品站。
为了能实时检测压力和位移,得出两者间的实时关系曲线,并据此对过程做出评判,系统采用了Kistler的CoMoII-S智能测量仪表,它内置电荷和电压放大器,可以实时采集压力和位移两路模拟输入信号,自动选择量程和不同的坐标及佳刻度,得出测量曲线,具有阀值、公差带、方框和终位等多种分析功能,并可根据需要选择不同的组合对各种过程进行分析和监测,与PLC接口方便。压力的检测采用Kistler的压电式传感器,经电荷放大器由CoMoII-S采集到压力实时值,位移用Novotech的高精度位移传感器测量,并由CoMoII-S采集到实时值,与压力一起作为被监控的变量。压机由气压驱动的气液增力缸实现,其升降由电磁阀控制。
三、控制系统的硬件组成及软件设计
根据该工位的输入/输出信号的点数要求,选用CPU214PLC作为控制核心,并扩展了一块EM223数字量模块,共有22位数字量输入点,18位数字量输出点。为了显示系统状态和输入控制参数,选用了一台OP3操作面板,经PPI通讯接口与CPU214连接。控制系统的硬件组成如图3所示。
图3 工位WS1.1 控制系统组成图
表2 工位WS1.1的I/O地址分配表
控制软件用STEP7Micro/Win编写,OP3由ProTool组态软件进行配置。控制程序分自动和手动两部分,在手动部分,通过OP3可以操纵所有运动机构的动作,包括压机、夹具的动作,CoMoII-S的参数选择及启动,便于系统调试。在自动部分,所有动作按要求的次序完成,程序中定义了一些内部标志寄存器位,用于PLC和OP3间交换信息,也使用了顺序寄存器指令,使各程序步间互锁,tigao了系统的可靠性。自动部分的软件流程如图4所示。
图4 控制系统软件流程图
四、结束语
汽车转向泵自动装配线采用西门子S7系列PLC控制,不仅简化了系统,tigao了设备的可靠性,也大大tigao了成品率和产品质量,通过操作面板修改系统参数就可以实现多种不同产品的装配,现场设备的工作状态和产品信息都在操作面板上显示出来,方便了用户的操作和维护。该装配线自2001年投入运行以来,工作稳定可靠,加工出的产品经设备的严格测试,质量和性能完全符合要求,受到了用户的好评。
引言:
在新开发的产品中有一个型号为Q7的长条铝基台,要在上面加工两个φ3.7×1.65的平底盲孔,由于要求精度高,批量大,故无法用传统的钻模在钻床上加工,也很难在传统铣床上面加工,能加工效率也很低,并且设备损耗和电力损耗也很大。此工件的加工有着非常广泛的代表性,生产的很多产品有着类似的要求,为此,我们设计制做了一台用于此类产品加工的设备——通用型数控钻铣床。
一、系统概述
控制部分采用PLC,并配以人机界面进行程序参数修改、设定,以及运行状态显示监控,可编程设置人机界面的内容。三轴均为全数字交流伺服系统,各轴伺服电机通过连轴器带动滚珠丝杠,以移动配有直线导轨的工作台和主轴铣头,其定位准确,速度快。主轴铣头由变频器控制,根据刀具及工件和进给量,来设置主轴合理的转速,并在程序中设定它的启动停止。各轴均设二端极限传感器和原点传感器,冷却和润滑也都有异常检测,在报警灯和人机界面处显示报警信息。为便于调试和检修,各项操作均设手动功能,如手动各轴快慢移动、主轴高低速旋转、切削液及润滑开关等。此机床整体虽为半闭环控制,只要选件、装配、程序编制及操作合理,精度和稳定性还是能满足使用要求的。
二、硬件配置
PLC选用永宏的FBS-40MCT,该型机具有较高的性价比,体积小,功能强,24点输入,其中有16点高速计数器,频率可达120K,16点输出,其中有4轴步进或伺服输出整合在里面,输出频率可达120K,使应用起来非常方便,接线简捷。编程软件WinProladder有梯形图大师之称,易学易用且功能强大,编辑、监视、除错等操作非常顺手,按键、鼠标并用及在线即时指令功能查询与操作指引,使编辑、输入效率倍增。
接点分配:取各轴伺服电机的Z相信号作原点开关,要分接在几个高速输入点上,用中断进行机床原点复归,其余限位开关、操作开关、液位检知等常规接点可按顺序依次接入。X、Y、Z三轴伺服电机连在前3轴伺服输出点,主轴高低速、冷却、报警等接在其余输出点上。
X、Y、Z3轴伺服系统均选用相同的,和利时的ES系列全数字交流伺服驱动器0040E-CBCEE-02,和60系列小惯量的伺服电机60CB040C-2DE6E。该伺服系统功能比较完善,如能耗制动、电子齿轮、自动加减速等,具备多种脉冲串输入,保护功能也比较完备,有欠压、过压、过流、过载、堵转、失速、位置超差、编码器异常等。在此设备中按集电极开路驱动方式连接至PLC,高脉冲输入频率为200K,伺服ON、Z相信号等也做相应连接。
变频器选用富凌的DZB70B0015L2A,规格为单相1500W,400Hz,有多步速供编辑使用。由于正常使用时不频繁变速,故速度调节设定不引出,只在变频器操作面板上调节,设定两个速度,高速用于加工,低速用于对刀。调节相关参数与主轴匹配,如基频、基压、运行频率上限、载频等,并改动相应跳线。
主轴没有采用传统方式,而是根据加工需要,采用了雕刻机用的电主轴,安阳莱必泰的ADX80-24Z/1型,其体积小、噪音低,直径只有80mm,这样使整个主轴箱便于整体密封,可有效地防止加工中的碎屑飞溅到Z轴的丝杠和导轨上造成损害,也使主轴箱外表显得美观。它的高转速为24000转/分,使正常工作转速6000-14000转有一个合适的余量范围。 人机界面选用人机电子的通用可编程文本显示器MD204L,它可以以文字或指示灯等形式监视、修改PLC内部寄存器或继电器的数值及状态。
三、软件设计
开机后先检测手动开关是否有效,若手动开关有效即利用各手动控制开关执行手动操作的项目。若手动开关无效,则启动原点复归程序,各轴进行机床原点复归,先回Z轴再回其它两轴,当所有轴都原点复归成功后才能进行到下一步。若刀具和工装夹具、工件程序均没有变动,可复位到加工预备状态而不进行对刀,若需对刀,则打开对刀开关启动对刀程序,3轴分别对刀,即找工件原点,利用手动各轴移动开关快慢移动各轴,使工件的三个面分别碰触低速旋转的刀具,刚好碰上为止。对好后,按对刀OK确认,再输入刀补,经过程序处理,即形成工件原点也就是编程0点,编程时根据此0点按照图纸计算刀具路径,可使操作者思路清晰,编辑运算简单。操作者编辑的是用户程序,可以编辑刀具轨迹,就是各轴移动坐标,还有移动速度、循环加工时的循环次数等。编好程序后或使用当前程序时,即复位到预备状态:各轴移动到初始位—一个合适的位置,装卸工件方便、不易碰触刀具时,装上工件,按启动即可开始加工,主轴运转,冷却液开,各轴按程序设定坐标移动。当加工结束时,机床复位,即各轴又移动到初始位,主轴停,冷却关,这时可卸下工件,完成加工过程。
工件的加工流程图如图3所示,以Q7产品为例,胎具上一次装夹15只工件,那么就有30个φ3.7的平底盲孔需要加工,刀具选用φ3.7的2刃钨钢立铣刀,钻削加工,钻削深度1.65mm。在预备状态时紧靠工作台上的定位固定好胎具,按启动后,主轴旋转,待主轴即将达到额定转速时,X、Y轴运转到加工工位,也就是个孔的X、Y工件坐标值,此时冷却液打开、Z轴快速下降到加工区,即铣刀端面即将触及工件加工面,迅速变用缓慢的工进速度开始钻削加工。当加工深度到达设定深度(1.65mm)时,Z轴带动铣刀迅速抬起,抬起的高度为铣刀端面水平方向上碰触不到工件及胎具为准。计数器加1后程序进行比较运算,判断加工是否完了,如否,则X、Y轴继续运转到下一加工工位,再重复Z轴下降加工动作。如加工完了,产量计数器加数、主轴停转、冷却液关闭,发出5s声光报讯,用以提醒操作者,各轴移动到初始位:Z轴到上端;X轴到左端;Y轴到外端。卸下胎具后,一个加工周期完成,装上胎具再按启动即开始进行下一轮加工。
四、一些着重的电气措施
1.主回路加装漏电断路器,相应回路都安装合适的断路器。
2.PLC和伺服系统的电源处都分别加有电源滤波器。
3.各直流继电器线圈都并接反峰二极管,交流接触器线圈并接阻容吸收回路。
4.润滑、主轴冷却都设液位低报警器。
5.伺服控制线、人机界面通讯线等使用屏蔽线,并远离电源线。
6.在拖链内走线,使用耐折的柔性电缆,并尽量增大拖链的弯曲半径。
7.变频器与PLC、伺服驱动器等保持一定距离。