西门子模块6ES216-2BD23-0XB8原装代理
1 引言
近20年以来,橡塑电缆机械行业与其它行业一样发展迅速。在入世后的市场竞争中橡塑机械行业面临严峻的挑战。提高橡塑生产制造装备自动化技术水平能够有效地提升行业综合实力。
2工艺流程
线材进入放线设备在放线张力控制条件下,从预成型辊轮架穿过并加热,被挤塑机挤出的橡胶材料覆盖外套。覆盖了橡胶外套的线材,进入生产线主速牵引装置,经过高温硫化由变频器控制每分钟的生产速度,再经由履带辅助牵引进入后处理阶段。在芯线折断和成型工艺装置上,经过张力架检测张力作为张力反馈,速度由主速给定,匀速恒定张力的送线,经计米器控制后切割成型。在整条生产线上,主牵引和辅助牵引控制系统工作在速度方式:包括高温处理,微波硫化,后加热速度串联同步;并且要求各级可以微调并后级同步调整。而钢带放线和成型控制系统工作在恒转矩方式,速度变化引起的转矩波动被转矩控制系统控制,相互配合以保证速度和张力的恒定。
3 基于台达机电产品的配置设计
图1 自动化系统体系结构
系统体系结构由台达机电产品构成核心自动化技术平台,参见图1,配置表参见表1。
[NextPage]
表1自动化系统配置表
注:DOP-AE57CSTD人机上的界面程序在另两台DOP-AE10THTD上必须有,就是DOP-AE10THTD能控制DVP12SA11R,而DOP-AE10THTD界面程序不必在DOP-A57CSTD上有,就是DOP-AE10THTD不控制EH PLC。
4 基于台达机电产品的整体解决方案
4.1 一机多屏
由于此流水线长度较长,客户需要在流水线不同的地方安装人机,以便在操作时不用走很长的距离来操作及监控设备,根据此要求人机之间必须进行通讯,这就是我们平常讲的“主从屏”控制。
利用台达人机有一个非常的特点就是有三个通讯口且两个通讯口可以RS232、RS485、RS422进行随意配置,且每个通讯口都是互相独立的。这样就可以利用每一个人机的一个通讯口(此例中采用人机的COM3 设置为RS485通讯格式 7 E 1 9600)连接起来,进行通讯,主机通讯协议采用(MODBUS MASTER),而从机采用(MODBUS SLAVE)。而人机间数据的交换必须采用宏程序来实现。
4.2 通讯从站
根据系统变频器、温控器通讯要求快速的的要求,采用两台10.4寸人机分别与两台EH PLC通过另两个通讯口(COM1 COM2)进行通讯,那是不是要问如上述所说不是一机多屏不是一样能完成吗?何必要如此多此一举呢?那我这里为什么要这么做呢?因为在我实际调试时发现用宏程序来做一机多屏时,如果数据很多,数据利用宏程序在人机交换,因为数据很多,人机的处理速度有限且由于波特率的限制,要满足非常快的通讯要求会有一些勉强,那么我采用在PLC上加装DVP-F485卡(只能作为从站),使得一个PLC能与两个触摸屏通讯,这样我就可以在与变频器、温控器通讯这一块不用通过人机处理直接与两台PLC通讯,这样通讯慢的问题迎刃而解。
4.3 EASYbbbb通讯
根据需要通讯的变频器及温控器数量众多且通讯要求及及时性要高,故采用了台达PLC具有的EASYbbbb功能,此功能优点在于通讯程序底层已经写好,没必要你自己编写复杂的通讯程序,你只需要设置相应的特殊寄存器,这样既方便又可靠且速度快,EASYbbbb功能请参考台达PLC编程手册。
4.4 变频器同步
[NextPage]
整个生产线控制有8台变频器,8台变频器频率控制水线,分成七段控制,主要利用台达通讯的便利性,用通讯的方式,随时随地读变频器的频率,只要发现其中一台变频器频率有变化,会根据一定的比例,后续几台变频器跟着变化,以便处理四段速度的同步以控制张力。
八台变频器,当其中一台变频器频率有改动时(通过模拟量改动,或者主频、比例给定)有改动时,那后续的几台变频器就会根据以上的关系,会自动改正频率,以保证同步。
当有两台以上变频器频率通过模拟量微调或者通过人机改变比例、主速时,那以前一台为准,后续几台的频率值修改都必须得屏蔽掉,例:比如现场有两个操作工修改第二台、第三台变频器的模拟量进行微调频率,那频率修改值以第二台为基准。
频率值是主频与模拟量辅频设置,在现场模拟量辅频何时改变是不可知的,那编写程序时必须每时每刻都要读频率,来了解现场变频器频率值变化,频率读好后,还要根据频率变化根据比例计算后,计算出的频率值自动的靠通讯写给相应的变频器。因为是每时每刻的在读频率,频率给定有两个来源,那难点在于何时把写好的比较值,给寄存器,再用此频率值与读的频率比较,当作参考值。
运用以下思路编写程序,而通过调试客户满意调试效果。原先想运用04AD+04DA,这样的话写程序更简单,因为客户现场此生产流水线过长(有五六十米长),微调的模拟量必须紧靠每一个工位,客户布线现状比较糟糕,在这么长的线路上模拟量会有很大的衰减和干扰,靠通讯的方式会相对比较好一些,故采用完全用通讯的方式来解决客户同步的要求,相对的程序要求编写会比较复杂一些,特别是何时在给比较值参考,怎么样屏蔽后几台频率变化的问题。
4.5 PID功能
此PID功能主要应用在控制微波加热,而我在应用PID功能时进行了变速积分及积分饱和限制的改进算法,使其在控制时超调非常的小及非常的稳定。
5 结束语
通常,整体解决方案难点主要在于怎样根据设备工艺要求组成高效稳定的网络,使电气产品能够有效地进行通讯。本案例系统的给出自动化系统集成项目关于通讯问题的深入分析与设计方法。基于台达机电单一自动化平台,解决方案为实现系统通讯的整体集成提供了相对于异构自动化平台通常难以顺畅集成的工程技术优势。
1 引言
卷板机是锻压加工设备。卷板机主要用于工业容器罐、压力管成型加工等机械冷加工领域,要求成型一致性好,弧线规范,焊接缝口连接好。传统上工业容器罐由人工逐段的凭经验操作压辊成型。由于天然气管道、油罐车的需求量增加,传统的生产已经满足不了市场的要求,需要全自动化的机器实现规模化工业生产。
2 工艺分析
卷板工艺是利用卷板机对板料进行连续3点弯曲的成型过程,如图1所示,卷板工艺过程由预弯——对中——卷圆——矫圆过程组成。卷圆工艺过程分析:上辊式卷板机的下辊为固定间距,上辊为式,可实现升降及前后移动,上辊升降由液压缸驱动,前后位移由电机驱动,下辊由主电机经减速器后驱动,具备数字控制的整机条件。
2.1 预弯
板料卷制时,平板两端各有一段长度,由于没有接触上辊不发生弯曲,称为剩余直边。为了避免板料从工作辊间脱出,实际剩余直边常比理论值大。对称弯曲时为(6~20)£(£一板厚),非对称弯曲时为对称弯曲的1/6~1/10。由于剩余直边在矫圆时难以消除,并造成较大的焊缝应力及设备负荷,容易产生质量和设备事故,故卷制前必须对板料进行板边预弯,使剩余直边接近理论值。本机是非对称弯曲,具有预弯边的能力。
2.2 对正
对正的目的是使工件母线与辊轴线平行,防止产生扭斜。
2.3 卷圆
卷圆的方式分为一次进给与多次进给。冷卷回弹量显著,需加一定的过卷量。
2.4 矫圆
轿圆一般分为三个步骤。
(1)加载。根据经验或计算将辊筒调到所需的大矫正曲率位置;
(2)滚圆。将滚筒在矫正曲率下滚卷l~2圈(着重滚卷近焊缝区),使整圆曲率均匀一致;
(3)卸载。逐渐卸除载荷,使工件在逐渐减少的矫正载荷下多次滚卷。
2.5 技术参数和自动化要求
(1)卷板机技术参数参见表1。
(2)自动化要求
•独特的弯曲工艺,高精度端部预弯,连续弯曲无后角,弯曲过程数字控制。
•人机对话控制界面,高效智能操作。
•物理弯曲工艺软件,人机对话窗口,弯曲过程自动补偿。
•丰富的弯曲形状。
•具有卷制O型、U型、多段R等不同的形状。
3 电气自动化解决方案
3.1 自动化功能设计
从整个卷板工艺过程可以看出,需要电气控制完成的功能包括:
(1)位移量控制。根据操作人员输入的卷板弧线长度、弧线半径、板材材质参数,控制器自动计算卷板机各个运动部件在不同卷制阶段的理论位移量,例如一款机器是专为油罐车的罐壳的,那么只要把状态打到自动,找好开始原点,按下启动,一次自动成型,做好后
下料结束后机器会自动复位到原点开始下一个产品,参见图2。
[NextPage]
(2)上辊(卷板辊)升降位置控制。根据理论计算,控制下辊旋转驱动电机(恒速度)、上辊横向移动电机(在压直边时用)和升降液压缸控制阀协调工作,自动完成预弯、对中、卷圆、矫圆全过程。对于油罐车的罐体由于采用了对称式三辊控制,只要控制上辊的升降位置就可以了。
3.2 卷板辊运动控制原理设计
卷板尺寸设计参考参见图3。
(1)设计条件(mm)。需要卷取材料的弧线半径为R;下辊的半径为r=95;两下辊的中心距的一半为S=180;板材的压下量为h;上辊原点距离下辊上平面的高度为L
(2)几何数学推导。
根据图3:
上辊每次在做产品之前处于原点,我们只要控制上辊在二维平面的坐标就可以了,即控制y= h+L就可以了。
其中R为工艺设定值、L、D2为已知恒定值,带入就可以得到h的值,在做不同的弧度的罐体时我们只要根据h=f(R)就可以控制上辊升降的切换,每段孤线的长度可以由装在下辊同心轴上的编码器来控制,根据反馈的脉冲来控制每段弧的起始和结束。
3.4系统框图设计
根据控制要求再选用电气产品,主要控制框图如图4所示。
[NextPage]
4 台达机电解决方案
4.1 设备选型
基于台达机电产品的系统解决方案主控平台设备选型参见表2。
5 结束语
根据国家十一五规划预测市场前景,随着天然气管道、油罐车的基本建设投入计划,传统的卷板成型生产工艺已经满足不了市场的需求量增速,需要全自动化的机器装备。南通海安是全国卷板机机械厂的集中产地,地区的市场量在500套左右。在电气自动化领域具有一体化电气自动化平台能力的台达产业优势比较突出,触摸屏——PLC集成方案配置在经济性与控制技术先进性的平衡方面可以为客户的投资提供更好的回报。
1 引言
在金属等材料切削成型加工领域,珩磨加工属于精加工后期的精整加工,其目的是为了获得更小的表面粗糙度,并稍微提高精度。珩磨用刃形和刃数都不固定的磨具或磨料进行微小加工余量切削的方法。
2 工艺原理
珩磨用镶嵌在珩磨头上的油石(又称珩磨条)对精加工表面进行的精整加工,又称镗磨。珩磨主要应用在对孔的加工, 但根据需要有时也用珩磨来加工外圆, 平面, 锥形孔和非圆孔(例如转子发动机的非圆孔珩磨)。珩磨加工不一定要对所有的孔有珩前要求, 珩磨需要根据加工要求, 要能改善尺寸精度,形状精度, 表面精度,甚至位置精度。 几乎所有在工业领域应用的工艺材料都可以用珩磨加工。根据不同的工件材料选择相应的切削砂条,使得珩磨可对硬质处理和未硬质处理的钢,铸铁,青铜,轻金属,粉末合金及镀铬或者其它镀层的金属进行加工。加工的尺寸范围为直径1-2000 mm,长度至24米的工件。 珩磨的应用范围已扩展到了整个金属加工工业领域。主要的应用领域为:汽车工业,刀具及机床加工工业,液压及气压器件生产以及航空航天领域。在空气压缩机和电机的生产制造中珩磨加工也得到了广泛应用。
3 方案设计
由中达电通公司开发的卧式精密珩磨机,具有较高的工作效率和工作性能,该系统不但jingque珩磨工件内圆,能够jingque检测工件内圆的“凸点”,加工效率也远远超过内圆磨床。基于中达机电技术的自动化卧式精密珩磨机如图1所示。
3.1控制系统的核心工艺及控制分析
[NextPage]
系统要求珩磨和“凸点”检测进行,珩磨的厚度主要由珩磨油石、油压控制检测的光栅和PLC共同实现,由于台达32EH00M伺服控制专用PLC系列能够接收2信道差动输入,无需其它转换电路,光栅尺信号可直接接入PLC,且将伺服驱动的分频输出直接输入PLC,以便实时检测机台的位置。在实际的珩磨过程中,因工件内圆的“凸点”存在,由此形成珩磨变频马达电流瞬间的一个峰值,利用系统核心PLC记忆该电流峰值形成时的位置,控制伺服小车在此“凸点”珩磨摆动的次数,达到预期的珩磨精度,也可以根据光栅尺内圆半径的检测,自动研磨至设定的厚度。该系统采用变频负载/电流线性对应关系,完成了对加工工件内圆的“凸点”检测。台达V系列变频为全矢量高性能的驱动,能够快速jingque反应出负载电流的变化,而台达PLC采用通讯方式快速采样变频器电流为该系统的关键所在。
3.2控制结构设计
控制结构参见图2。
3.3硬体控制方案
PLC :DVP32EH00M台达伺服专用。
变频器 :VFD075V43台达全矢量控制型。
伺服系统:3000W/台达中惯量系列。
系统电控柜参见图3。
[NextPage]
3.4人机界面设计
关键的控制参数如图4、图5、图6所示。
[NextPage]
3.5主要技术规格
(1)加工孔径: 3-250mm
(2)大加工长度:2500mm
(3)主轴转速: 50-600转/分,无级调速
(4)珩磨速度:1.00m-22m/分
(5)主轴功率: 7.5KW
(6)机台功率:3KW
(7)油泵功率:400W
4 结束语
方案研发运行结果说明,系统设计达到预期设计效果。该机床可以加工各种材料的内圆工件,从淬火钢、硼铸铁、硬质合金、陶瓷到铝合金、青铜、有机玻璃等硬软材料,以及其它难加工材料的内圆工件。由于台达PLC/EH系列提供大容量掉电保持数据寄存器(8000项),控制系统性能具有无须其它外设即可实现用户工艺配方的存储,方便现场生产的灵活调度的特点。