6GK7243-1GX00-0XE0大量现货
在工业控制中,某些输入量(如压力、温度、liuliang、转速等)是连续变化的模拟量,某些执行机构(如伺服电动机、调节阀、记录仪等)要求PLC输出模拟信号,而PLC的CPU只能处理数字量。模拟量被传感器和变送器转换为标准的电流或电压,如4~20mA,1~5V,0~10V,PLC用A/D转换器将它们转换成数字量。这些数字量可能是二进制的,也可能是十进制的,带正负号的电流或电压在A/D转换后一般用二进制补码表示。
D/A转换器将PLC的数字输出量转换为模拟电压或电流,再去控制执行机构。模拟量I/O模块的主要任务就是完成A/D转换(模拟量输入)和D/A转换(模拟量输出)。
例如在炉温控制系统中,炉温用热电偶检测,温度变送器将热电偶提供的几十毫伏的电压信号转换为标准电流(如4~20mA)或标准电压(如l~5V)信号后送给模拟量输入模块,经A/D转换后得到与温度成比例的数字量,CPU将它与温度设定值比较,并按某种控制规律(如PID)对二者的差值进行运算,将运算结果(数字量)送给模拟量输出模块,经D/A转换后变为电流信号或电压信号,用来调节控制天然气的电动调节阀的开度,实现对温度的闭环控制。
有的PLC有温度检测模块,温度传感器(热电偶或热电阻)与它们直接相连,省去了温度变送器。
大中型PLC可以配置成百上千个模拟量通道;它们的D/A,A/D转换器一般是12位的。模拟量I/O模块的输入、输出信号可以是电压,也可以是电流;可以是单极性的,如0~5V,0~10V,1~5V,4~20ms,也可以是双极性的,如 50mV,±5V,±10V和±20mA,模块一般可以输入多种量程的电流或电压。
A/D,D/A转换器的二进制位数反映了它们的分辨率,位数越多,分辨率越高,例如8位A/D转换器的分辨率为2-8=0.38%;模拟量输入/输出模块的另一个重要指标是转换时间。
将继电器控制电路直接转换为具有相同功能的PLC的外部硬件接线图和梯形图。
特点:一般不需要更改控制面板,保持系统原有的外部特性,操作人员不用改变长期形成的操作习惯。
例:用继电器控制线路移植法设计某摇臂钻床的PLC外部硬件接线图和梯形图。
摇臂钻床的继电器控制电路
主轴电动机一一接触器KM1控制;
摇臂升降电动机一一接触器KM2, KM3控制;
松开、夹紧(立拄、主轴箱)电动机一一KM4, KM5控制
继电器电路图
一、基本方法和步骤
1、了解和熟悉被控设备的工艺过程和机械的动作情况,根据继电器电路图分析和掌握控制系统的工作原理。
2、确定PLC的输入信号和输出负载,画出PLC的外部接线图。
3、确定与继电器电路图中的中间继电器和时间继电器对应的梯形图中的辅助继电器和定时器的元件号。
4、根据上述对应关系画出梯形图。
二、设计注意事项
1、应遵守梯形图语言中的语法规定
2、设置中间单元在梯形图中,若多个线圈都受某一触点串并联电路的控制,为简化电路,在梯形图中可设置用该电路控制的辅助继电器,类似于继电器电路中的中间继电器。
3、分离交织在一起的电路
设计梯形图时以线圈为单位,分别考虑继电器电路图中每个线圈受到那些触点和电路的控制,画出相应的等效梯形图电路。
4、常闭触点提供的输入信号的处理
设计输入电路时,应尽量采用常开触点,如果只能用常闭触点,梯形图中对应触点的常开/常闭类型应与继电器电路
5、时间继电器的瞬动触点的处理
对于有瞬动触点的时间继电器,可以在梯形图中对应的定时器的线圈两端并联辅助继电器,后者的触点相当于时间继电器的瞬动触点。
6、断电延时的时间继电器的处理
用通电后延时的定时器来实现断电延时功能。
7、外部联锁电路的设计
在梯形图中设置对应的输出继电器的线圈串联的常闭触点组成的软件互锁外,还应在PLC外部设置硬件互锁电路。
热继电器过载信号的处理
1)自动复位型热继电器,其触点提供的过载信号必须通过输入电路提供给PLC,用梯形图实现过载保护;
2)手动复位型热继电器,其常闭触点可以在PLC的输出电路中与控制电机的交流接触器的线圈串联。
9、尽量减少PLC的输入信号和输出信号
10、注意PLC输出模块的驱动能力能否满足外部负载的要求。
PLC一般只能驱动额定电压在AC220V以下的负载线圈电压为380V的,应将线圈换成220V的,或者在PLC如果系统原来的交流接触器的外部设置中间继电器。
水下电弧有着广泛的用途,其中应用之一是水下制取“电弧气”。制造电弧气的一个关键要素就是保持电弧电压的稳定,使电弧能在水下稳定放电。大电流(1000A,DC)、大功率(50kW)水下电弧放电本身是一个复杂的过程,电弧长度短,具有非线性、变参数、不易稳定等特点。试验表明采用PFC-PID串级控制策略的水下电弧控制系统的动态品质明显优于采用传统PID控制的系统,具有较强的鲁棒性和抗干扰能力。
大多数PID控制都是基于单片机进行,但单片机控制的DDC系统软硬件设计较为复杂,特别是涉及到逻辑控制方面更不是其长处,而PLC却是公认的佳选择。随着PLC功能的扩充,许多PLC控制器中都集成了PID控制功能,在逻辑控制与PID控制混合的应用场所中采用PLC控制是较为合理的。经过认真的市场调研和技术准备,笔者使用了目前比较先进的PLC技术开发控制系统,对现场各种生产过程信号进行采集.监测、计量。从实际应用的效果来看,该系统具有、可维护性强、性能稳定等优点。
2系统的工作原理
在水下电弧控制系统中,电弧放电在反应器中完成,气体由此产生。电极控制装置连续地将碳棒电极送入反应器中并维持电极电弧的稳定,从而保持电弧电压和电流的恒定,使得产气成分稳定且产气效率tigao。水下电弧控制系统示意图如图所示。
1.控制器,2.伺服放大器,3.220W交流伺服电动机,4.进退限位开关,5.碳棒检测开关,6.前进限位开关,7.阴极碳棒,8.阳极碳棒,9.下棒控制电磁阀,10.反应堆,T.反应罐温度,P.反应罐压力,U.电弧电压,I.电弧电流。
碳棒的进退是通过伺服电机经传动作用来实现控制的。控制器通过不断检测T、P、U、I值的大小及各开关量的状态来控制电机的转速,通过动丝杆传动作用推动碳棒前进,当碳棒前进速度同碳棒燃烧速度一致时,可认为弧长基本不变,从而实现整个电弧的电压电流恒定控制。
由于阴极碳棒相对阳极碳棒燃烧速度较慢,在工艺设计时,将阴极碳棒与推进导杆连为一体,由伺服电机控制该碳棒的进退,其换棒工序需人工手动完成;阳极碳棒则与推进导轩相分离,导杆只可往前推进碳棒,而不能控制其后退,通过位置检测开关检测碳棒是否推进到位,以决定是否进人自动换棒工序。在进行换棒时,电机控制阴极导杆快速后退,另一电机控制阳极碳棒自动跟进,以免断弧。
3S7-200系列PLC的特点
S7-200为西门子公司生产的SIMATIC系列小型PLC,无论是独立运行,还是相连成网络,皆能实现复杂控制功能,适用于各行各业、各种场合中的检测、监测及控制的自动化。此次选用的CPU226有如下特点:24输入、16输出共40个数字量I/O点,可连接7个扩展模块,大扩展至248路数字量I/O点或35路模拟量I/O点;13KB程序和数据存储空间;6个独立的30 kHz高速计数器,2路独立的20kHz高速脉冲输出,具有比例、积分、微分(PID)控制器;2个RS485通信-编程口,具有PPI通信协议、MPI通信协议和自由方式通信能力;I/O端子排可很容易地整体拆卸。自由通信是S7-200系列PLC的一大特色。它使S7-200系列PLC可以与任何通信协议公开的设备、控制器进行通信,即可以由用户自己定义通信协议(如ASCⅡ协议)。波特率高为38.4kbit/s(可调整)。可以通信的范围大大增加,控制系统配置也更加灵活、方便。
4控制系统方案设计
如图2所示,本控制系统的现场控制部分选用了S7-200Micro PLC CPU226 DC/DC/DC型和SIMATIC TP270型触摸式面板作为基层控制部分。PLC与触摸屏间的通讯通过RS-485串行总线完成。PLC控制器本机系统通过其扩展模块主要完成5方面功能:DI(开关量输入)、DO(开关量输出)、AI(模拟量输入)、AO(模拟量输出)、通讯。其中DI口用于检测开关状态(如液位开关、接近开关、光电开关等);DO口用于高速脉冲的发送、变频器的开停控制、各电机的开停控制、电磁阀的控制等。AI用于模拟量的采样,现场模拟量主要包括反映罐温度、压力、电弧的电压电流等,从现场传送到AI模块的信号为4mA~20mA电流信号。AO则根据现场采集到的信号调节模拟量输出大小来控制变频器频率的高低,进而通过变频器来实现对循环泵和气体压缩泵的速度控制。伺服电机的控制则通过告诉脉冲输出控制来完成。在控制柜内部预留出用于其它功能模块的扩展空间,如额外的压力检测、气体浓度检测,还有Medem上网模块,以后系统升级可将现场得到的各种数据通过Modem发送到Internet。
5系统软件设计
5.1PLC程序设计说明
CPU226是西门子S7-200系列中的PLC,本机自带24个数字输入口、16个数字输出口及两个RS-422/485串行通讯口,多可扩展7个应用模块。这里通过扩展EM231模拟输入模块来采集电压信号,输入模拟信号可选择OV~10 V、±5 V、0 mA~20mA等多种信号输入方式。终PLC根据输入电压信号的大小控制脉冲发送周期的大小,从而达到控制伺服电机速度的目的。本系统中控制程序主要完成以下几个任务:
1)系统参数的初始化;
2)各种检测开关的读取;
3)电压、电流、工作压力、温度等的读取;
4)电机、变频器、电磁阀等的控制。
为了完成上述各种功能,程序分为七大模块,分别为:
1)初始化程序:完成系统各种参数的初始化,如在控制面板上对参数作了修改,则下次运行时会自动用新参数完成初始化;
2)模拟量的读取:开机工作便开始完成电压、电流、工作压力、温度等的监测与读取,实时传递数据到面板显示;
3)主控程序:完成各子程序使能模块的调用及切换,各种限制及保护功能等;
4)手动控制程序:实现各种控制状态的手动操作;
5)自动控制程序:完成自动换棒、自动补水、自动引弧、各种电机等的控制;
6)控制算法程序:完成对产气压力和工作电弧的恒定控制;
7)PWM/PTO脉冲控制:根据检测到的电弧电压及碳棒状态自动调节脉冲频率或脉冲个数、两个脉冲口的配合与切换、PWM/PTO工作方式的配合与切换等。
5.2程序控制流程
整个程序的控制难点在于对电弧的控制,本文仅给出电弧控制的流程,如图3所示。电弧控制难的主要原因在于电弧燃烧时其间距较小,容易受到外界干扰,引起控制器的震荡。在换棒过程中,容易出现断弧现象,针对电弧燃烧时阴极和阳极燃烧速度不同设计了以下控制程序(阳极燃烧速度远远大于阴极)。
在换棒时,右电机(控制阳极碳棒)控制滚轴丝杆全速后退,左电机(控制阴极碳棒)则进入PID调节程序自动跟进,当检测到碳棒到位,右电机先控制滚轴丝杆快速前进以弥补虚位,将PID控制切换到右电机上,左电机缓慢后退。
6 结束语
基于PLC的水下电弧控制系统软硬件设计较为简单,但逻辑控制功能强大,由于许多PLC控制器中都扩充了PID控制功能,在逻辑控制与PID控制混合的应用场合采用PLC控制是较为合理的。从系统实际运行的效果来看,该系统、可维护性强、性能稳定。
电气控制原理图是根据所要达到的控制过程需要的控制信号和被控制设备及控制要求绘制出来的,绘制电气控制原理图要分析控制过程和控制要求,按一定的步骤来完成。设计PLC的电气控制原理图,要了解输入输出信号的性质和相关要求,再根据所选用的PLC来合理地安排输入输出地址,后才能完成电气原理图的设计。
1)输入/输出点数
根据要实现的具体工作过程和控制要求理清有哪些输入量,需要控制哪些对象,输入量的个数即所需要的输入点数,需要控制的对象所需要的信号数即所需要的输出点数。
2)PLC的输入输出地址分配表
输入输出地址分配表是根据控制要求中需要的输入信号和所要控制的设备来确定PLC的各输入输出端子分别对应哪些输入输出信号或设备所列出的表。如表1所示为PLC控制的四路抢答器的I/O地址分配表。
表1 控制四路抢答器的PLC I/O地址分配表
输 入 | 输 出 | ||||
序号 | 说明 | 地址编号 | 序号 | 说明 | 地址编号 |
1 | 抢答按钮1 | X0 | 1 | 蜂鸣器 | Y0 |
2 | 抢答按钮2 | X1 | 2 | 组指示灯 | Y1 |
3 | 抢答按钮3 | X2 | 3 | 第二组指示灯 | Y2 |
4 | 抢答按钮4 | X3 | 4 | 第三组指示灯 | Y3 |
5 | 复位按钮 | X4 | 5 | 第四组指示灯 | Y4 |
6 | 开始按钮 | X5 | 6 |
I/O地址分配表一般要根据输入输出信号的信息和相关要求及所选用的PLC型号来进行分配,关于输出信号,需要了解所控制的设备的电源电压和工作电流,按照所需电源的不同进行分组。如YL-235A光机电一体化实训装置中所用的PLC为FX2N-48MR型,它的输出分为五组,其中有四组是四个输出端共用一个COM端,有一组是八个输出端共用一个COM端。
3)绘制电气控制原理图的要求
在绘制电气控制原理图时,要求整体布局合理,一般是左边为输入回路,右边为输出回路,或者下边为输入回路,上边为输出回路,主要控制元件位于中间位置;要求所画原理图正确;所用元器件的图形符号应符合中华人民共和国国家标准,要求对所用元件进行标注和说明,并对所有连线进行编号。