西门子模块6ES7222-1BF22-0XA8选型说明
前言
光缆护套机是通信光缆制造过程中的后工序的设备,它的作用是在成缆后的缆芯上加综合保护层,以保护缆芯不受外界机械、热、化学及水分的影响。设备的配置如图1所示,传动部分主要由缆芯放线架、钢(铝)带轧纹机、挤塑机、履带式牵引机、收线架等组成。在光缆的护套过程中,根据工艺的要求,整条生产线的速度必须保持稳定,各传动单元间的线速度比例必须协调。高精度地、可靠地保持这个比例系数是保证产品质量,生产正常运行的重要条件,任何原因破坏这种比例协调,就会影响产品的质量,比如光缆外径发生变化、生产过程中钢(铝)带断裂,甚至缆芯被拉断等。由于光缆价格昂贵,成本较高,一旦发生如上质量问题,对企业将造成巨大损失。
本文介绍了由西门子的S7-226PLC与MM440变频器组成的电气控制系统,该系统自动化程度高、稳定性好、运行可靠。
2 系统构成
在控制系统中,放线、轧纹、挤塑机、牵引机、收线和排线电机均采用交流变频电机,驱动器采用西门子的MM440系列变频器,该变频器是由微处理器控制,采用IGBT作为功率输出器件的西门子新一代变频器。具有很高的运行可靠性和功能的多样性。操作和生产工艺参数的显示采用西门子的TP-070触摸屏作为上位监控,可以实时、形象地显示现场信号,并可以实时地对现场控制点进行控制。全线控制采用西门子的S7-226PLC,外加模拟量输入模块EM231。为了提高设备的整体性能,采用S7-226PLC的自由通讯口分别与上位机TP-070和变频器进行通讯。其中S7-226的端口0用于和MM440通讯(USS4),端口1用于和TP-070通讯。系统结构如图2所示。
3 系统原理
由于该生产线无需频繁启动,工艺要求的变速范围也不大,达到稳速是该电气传动自动控制主要的目标,尤其是在系统的升降速过程中各传动单元之间的速度比例必须保持协调。在整条生产线中,生产的线速度是由牵引机的速度决定,在该系统的设计中我们以牵引的速度为参考,各传动单元的速度随牵引速度的变化而变化,并且各部分又能单独启动和停止。
1 放线、轧纹和收线电机的速度控制
在生产过程中,由于缆芯和钢(铝)带的盘具都是由满盘到空盘,收线盘是由空盘到满盘,而牵引的速度不会经常变化,放线、轧纹、收线电机的线速度(V=ω*D,式中V:线速度,ω:电机角速度,D:盘具直径)为了与牵引保持同步,随着生产的进程必须根据盘具直径的变化不断对电机的角速度进行微调。该微调信号主要是通过各自的张力舞蹈轮上的电位器来给定,具体是这样的,该电位器信号通过模拟量输入模块EM231送入S7-226,与反馈到PLC中的牵引速度信号(即同步信号)叠加,再通过USS4协议由S7-226加到各自的MM440变频器中,作为它们的速度给定信号,间接达到各自张力的恒定,从而保证与牵引同步。在这里需要注意的是,生产线的速度并不是很快,由于线盘具有有较大的转动惯量,放线和收线电机的加速度不宜太大,它们速度的设定应采用PID运算。
2 挤塑机的控制
在光缆护套的开始阶段,为了使光缆的直径达到工艺要求,挤塑机的挤出量必须有一个微调,也就是除了牵引的同步信号外,还要有一个微调信号对挤塑电机加以控制,使挤出量达到规定的工艺要求。该信号可以通过TP-070进行设定并送入PLC,与牵引的同步信号进行叠加后再通过USS4协议送到其MM440变频器重,作为控制该电机的给定信号。在生产开始前,挤塑机一般都要进行排料这一步工序,以检验从模口出来的料的塑化质量。还必须有一个独立的手动信号来加以对挤塑电机的控制,该信号也可以由TP-070来设定,后再通过USS4协议送入变频器。
3 牵引速度控制
牵引机的速度决定了整条生产线的线速度,它的控制非常简洁,其速度给定信号直接由TP-070设定后送入PLC,再通过USS4协议从PLC传输到MM440变频器上。在生产过程中,改变牵引的速度给定值不仅改变牵引机本身的速度,还使其它各传动单元的速度随着它的变化按一定的速度比例相应的发生变化,从而使整条生产线保持同步。
线速度的检测主要采用旋转编码器,由S7-226的I0.1和I0.2端口(高速计数器0)送入PLC。单位时间内高速计数器的计数值即为该生产线的线速度,通过TP-070显示于屏幕上。
4 排线控制
由于排线的速度需要根据光缆的直径自动跟踪收线的速度,即V=K*ω*D,其中V:排线速度,K:修正系数,ω:收线速度,D:光缆直径。排线电机驱动器的给定信号由以下两个因素决定:(1)收线速度通过旋转编码器测定,其信号通过S7-226的I0.6和I0.7送入PLC(高速计数器4)。PLC编程采用定时中断,在单位时间内测量到的高速计数器的计数值即为收线速度。(2)光缆的直径直接由TP-070设定并送入PLC。
PLC将上述两个参数相乘后再乘以相应的修正系数,所得的值就是控制排线电机速度的给定信号,该信号通过USS4协议传输到其MM440变频器上。在这里要注意的是,由于排线电机在工作过程中需要经常换向,也就是说当收到换向信号时排线电机需要高速的降速和升速过程,该变频器需外接制动电阻。
5 变频器设置
变频器的设置主要是注意以下几个参数的设定,见列表1所示。
表 1
4 结束语
本系统采用S7-226PLC自由通讯口方式通讯,由于在MM440变频器上具有RS485接口,从而可以方便实现变频器给定的数字化控制,并且硬件上无需再添加通讯接口。由于MM440变频器具有区别一般通用变频器的自由功能模块和BICO技术,可以实现灵活的组态设计,完成工艺复杂的控制要求。变频器的矢量控制,提高了系统的动态响应能力,克服了控制系统由于工艺参数的改变而引起的速度波动,从而保证了该控制系统的稳定性。
1 引言
传统桥式起重机的电力拖动系统采用交流绕线转子异步电动机转子串电阻的方法进行起动和调速,继电—接触器控制,这种控制系统的主要缺点有:
1.1 桥式起重机工作环境恶劣,工作任务重,电动机以及所串电阻烧损和断裂故障时有发生。
1.2 继电—接触器控制系统可靠性差,操作复杂,故障率高。
1.3转子串电阻调速,机械特性软,负载变化时转速也变化,调速不理想。所串电阻长期发热,电能浪费大,效率低。要从根本上解决这些问题,只有彻底改变传统的控制方式。
年来,随着计算机技术和电力电子器件的迅猛发展,电气传动和自动控制领域也日新月异。其中,具有代表性的交流变频装置和可编程控制器获得了广泛的应用,为PLC控制的变频调速技术在桥式起重机拖动系统中的应用提供了有利条件。
2 系统硬件构成
桥式起重机大车、小车、主钩,副钩电动机都需独立运行,大车为两台电动机拖动,整个系统有5台电动机,4台变频器传动,并由4台PLC分别加以控制。
2.1 可编程控制器:完成系统逻辑控制部分
控制电动机的正、反转、调速等控制信号进入PLC,PLC经处理后,向变频器发出起停、调速等信号,使电动机工作,是系统的核心。
2.2 变频器:为电动机提供可变频率的电源,实现电动机的调速。
2.3制动电阻:起重机放下重物时,由于重力加速度的原因电动机将处于再生制动状态,拖动系统的动能要反馈到变频器直流电路中,使直流电压不断上升,甚至达到危险的地步。必须将再生到直流电路里的能量消耗掉,使直流电压保持在允许范围内。制动电阻就是用来消耗这部分能量的。
桥式起重机大车、小车、副钩、主钩电动机工作由各自的PLC控制,大车、小车、副钩、主钩电动机都运行在电动状态,控制过程基本相似,变频器与PLC之间控制关系在硬件组成以及软件的实现基本相同,而主钩电动机运行状态处于电动、倒拉反接或再生制动状态,变频器与PLC之间控制关系在硬件组成以及软件的实现稍有区别。控制小车电动机的变频器与PLC控制原理图如图2所示。
1龙门刨床的机械传动控制要求
图1 往返式机械传动示意图
图1所示的龙门刨床的机械传动示意图。传动系统从原点启动,中速行驶到1000mm,开始高速行驶,高速行驶到3000mm,开始低速爬行,低速爬行到终点(3200mm)停车。停顿2s。反向高速行驶,高速行驶到距原点200mm处开始低速爬行。到达原点停车,停顿2s后重新开始往返。在原点和终点低速爬行的目的是为了避免系统惯性带来的定点误差,做到原点和终点的jingque定位停车。
2龙门刨床机械传动的PLC控制系统硬件设计
2.1 系统对变频器的控制要求
变频器的正反转由继电器K1、K2控制,速度的切换由继电器K3、K4完成。变频器故障报警输出触点(30A、30C触点)用于立即停止高速计数器运行,并由指示灯HR指示。
变频器具有多段速度设定功能,当K3、K4两个继电器触点都断开时,高速行驶(速度);K3闭合,K4断开时,中速行驶(第二速度);K3断开,K4闭合时,低速行驶(第三速度);K3、K4都闭合时,手动调节行驶(第四速度)。
旋钮SF用于手动/自动切换,并用指示灯HG1表示自动状态。手动时,能够通过按钮SA1(电机正转)和SA2(电机反转)手动调节传动系统的位置。
按钮SA用于传动系统在自动状态下的启动/停止控制。采用“一键开关机”方式实现启动/停止控制,用指示灯HG2表示启动状态。
行程开关SQ用于自动启动时,确定传动系统在原点位置,自动停止时,传动系统必须返回原点。行程开关SQ1、SQ2用于传动系统的两端限位,确保传动系统不能脱离设备。
2.2 PLC系统硬件系统的构成及连接
为了实现对龙门刨床机械传动的jingque定位,本系统采用PLC作为控制器,通过变频器进行速度调节,采用光电编码器和PLC高速计数器进行定位控制。根据龙门刨床的机械传动控制要求,系统中有开关量输入点8个,开关量输出点7个,光电编码器A相输入一个,选用SIEMENS的CPU224作为控制器,其I/O点的分配及系统接线如图2所示。
图2 龙门刨床机械传动PLC控制系统接线图
3 PLC梯形图程序的设计
PLC的梯形图程序设计包含主程序(用于实时调用手动子程序SBR_0和自动子程序SBR_1)、子程序SBR_0(用于实现对系统的手动控制)和SBR_1(用于实现对系统的自动控制)和中断处理程序INT_0程序(用于处理高速计数器计数当前值到达不同预置值的处理)。由于篇幅所限,以下将以中断处理程序INT_0程序为例,说明变频器对速度的控制和调节。其梯形图如下。
4梯形图设计过程中要注意的几个关键问题
4.1通过多次更改高速计数器的中断和预置值实现多点定位
实现多点定位控制的关键包括两点,点是设置高速计数器中断事件12(计数器当前值=计数器预置值),另一点就是在中断处理程序中更改高速计数器预置值。
定位控制需要测量定位点与原点的距离,将单位距离(mm)转换成脉冲量,通过光电编码器和PLC高速计数器记录脉冲量的变化。本系统中,光电编码器的机械轴和电动机同轴。传动比=10,用于驱动设备的传动辊直径=100mm,光电编码器每转脉冲数=600个/转。可以计算出每毫米距离的脉冲数为:
每毫米距离的脉冲数=600÷(10×100×3.14)≈0.19108脉冲/mm
定点位和预置值比较,必须采用高速计数器中断方式,而不能采用一般的比较指令。因为一般的比较指令无法捕捉高速变化的事件。
必须通过ATCH和ENI指令将高速计数器中断事件号12((计数器当前值=计数器预置值)与中断处理程序INT_0连接。在中断处理程序INT_0中,到达预置值时,重新装载下一次的预置值,并执行工艺要求的继电器输出,处理变频器的运行速度。
在自动子程序SBR_1中,将高速计数器HC0设置为单相计数输入,没有外部控制功能。在原点和终点通过更改计数方向,便于中断处理程序INT_0判断变频器的运行方向。
4.2 在中断处理程序INT_0中不能使用等于比较指令
由于在一个中断处理程序INT_0中判断处理多个预置值。需要比较指令和计数方向来判断目前高速计数器计数当前值在哪个阶段,根据判断来决定执行那一段指令。判断不能使用等于比较指令,应该使用大于或小于指令判断。
中断事件(计数器当前值=计数器预置值)发生时,PLC立即中断当前主程序、子程序,执行中断处理程序INT_0中的指令。在中断处理程序INT_0中,PLC仍然是按照逐条逐行的扫描机制执行。而高速变化的计数值不可能和中断处理程序执行同步,如果采用等于比较指令,PLC在执行中断处理程序时,可能会错过等于值,使PLC在中断处理程序中无法判断设备运行到哪个阶段。
4.3 在自动运行时,高速计数器的初始值寄存器写入必须禁止
由于多点定位需要多次装载预置值,写入预置值必须执行HSC指令。
执行HSC写入指令,不单单是写入预置值,如果在控制字节中不加以限制,初始值寄存器SMD38中的值同样写入。而SMD38=0,这样,就会使高速计数器计数当前值置0。在自动运行时,必须设置控制字节SMB37的第七位SM37.6为0,在装载预置值时,禁止写入初始值。
在高速计数器初始设置和返回原点重新开始运行时,又必须写入初始值,使初始值置0,避免机械原因带来的误差。控制字节必须多次修改。遵循的原则是:允许写入初始值、执行HSC指令后,必须马上修改控制字节,禁止初始值写入,并执行HSC指令,中间不能有其它指令存在。
4.4 多点定位的输出线圈尽量采用立即指令
采用高速计数器进行多点定位,主要为了jingque定位。定位精度既决定于高速计数器的测量,也决定于执行机构的执行快速性。
如果采用普通输出指令,在一个扫描周期的程序执行阶段,改变的仅仅是输出映像存储器,PLC的输出点不会立即刷新,只有在程序执行完毕后,PLC的输出映像存储器才能对输出点刷新,执行输出。
为了增加定位精度,尽量采用立即输出指令。立即输出指令不受PLC扫描周期阶段的限制,在改变输出映像存储器的立即刷新PLC输出点。
4.5自动/手动程序采用For-Next循环指令和子程序指令实现
本系统中的自动/手动功能通过采用For-Next指令和子程序指令实现。自动程序和手动程序实际上就是两个循环指令的循环体。而循环指令仅执行一次循环扫描刷新。
手动子程序SBR_0和自动子程序SBR_1用于整个程序的分段,便于程序的理解,增加程序的可读性。For-Next循环指令的作用是使输出线圈能够重复使用,简化程序。
中断处理程序:INT_0
当变频器正向运行(由SM36.5判断,增计数为正向运行,SM36.5=1),高速计数器当前值等于19108(1000mm)时,继电器K3(Q0.2)、K4(Q0.3)断开,变频器速度设定为高速正向行驶(速度)。将高速计数器预置值更改为57325(3000mm)。
当变频器正向运行,高速计数器当前值等于59325(3000mm)时,继电器K3(Q0.2)断开、K4(Q0.3)接通,变频器速度设定为低速正向爬行行驶(第三速度)。将高速计数器预置值更改为61146(3200mm)。
当变频器正向运行,高速计数器当前值等于61146(3200mm)时,表明达到终点,继电器K1(Q0.0)、K2(Q0.1)、K3(Q0.2)、K4(Q0.3)全部复位断开,变频器立即停止运行。发出终点到达信号M0.1,让子程序SBR_1处理停顿2s时间,并由SBR_1处理反向运行设置。
当变频器反向运行(由SM36.5判断,减计数为反向运行,SM36.5=0),高速计数器当前值等于3822(200mm)时,继电器K3(Q0.2)断开、K4(Q0.3)接通,变频器速度设定为低速反向爬行行驶(第三速度)。将高速计数器预置值更改为0。
当变频器反向运行(由SM36.5判断,减计数为反向运行,SM36.5=0),高速计数器当前值等于0时,表明变频器返回到达原点。继电器K1(Q0.0)、K2(Q0.1)、K3(Q0.2)、K4(Q0.3)全部复位断开,变频器立即停止运行。发出原点到达信号M0.0,让子程序SBR_1处理停顿2s时间,并由SBR_1处理正向重新运行设置。
本文创新点:
往返式传动控制系统的多点定位是一个较难解决的问题,本系统采用PLC作为控制器,通过变频调速,利用光电编码器和PLC高速计数器进行定位控制,克服了往返式传动控制系统中由于机械惯性的作用给系统带来的定点误差,从而实现了jingque定位。
煤矿井下人员定位系统也称为井下人员跟踪系统或井下人员考勤定位系统,是国家大力推广的用于煤矿安全监管的自动化监控系统,随着政府对煤矿安全管理系统的强制推行,煤矿井下人员定位系统得到了广泛的应用。 就数据通信而言, 如何寻找一种比 RS485通信距离更远、更可靠、使用方便的传输接口,已成为系统设计人员日益关心的问题。
井下人员定位系统主要用途:
•井下人员实时动态跟踪、位置自动显示。
•井下机车等移动目标跟踪定位。
•井下人员(含机车等移动目标)运行轨迹回放。
•定位目标的考勤、统计、存储、打印。
•井下出现事故,可根据本系统提供的准确位置信息实施人员搜索救护,使损失降到低点,保障安全的水平
得到提高。
•井上与井下的双向通讯,井上与井下人员的寻呼和井下人员向井上紧急报警。
就井下各个基站与井上中心站的有线通信来讲具有以下特点:
•传输距离远,小型矿井达几公里,大型矿井达 30 公里 以上,随着开采的进行距离会继续延伸。
•节点(基站)数多,有的大型矿井的基站数量超过 300 个以上,随着开采的进行基站数量会继续增加。
•数据传输量并不大, 4800bps 的通信速率即可满足众多基站与中心站的数据传输。
•须使用本安型通信接口,井下与井上的通信接口之间必须是能够承受 1500V 隔离电压的达到矿用安全认证的
产品。
根据以上特点,四星电子生产的 CAN-TTLG 和 CAN-232G 、 CAN-485G等超远程长线驱动器得到了广泛的应用,这些驱动器为本安产品,在通信速率为 4800bps 时,不加中继器即可达到 10 公里通信距离,并可驱动 110 个节点,每增加一个 ECANG 中继器又可传输 10 公里距离和驱动 110 个节点,利用 ECANG中继器也很好的实现了符合矿井树形结构通信网络。这些驱动器均为透明传输,并不需要更改原来的 RS485 通信软件,是替代 RS485接口的佳产品。
煤矿井下人员定位系统的组成框图:
煤矿井下人员定位系统在井上由中心站计算机、 CAN-232G 传输接口等组成;井下主要由通信基站、 CAN-TTLG传输接口、声光报警器、防爆电源和多功能矿灯等组成,井下人员佩带的多功能矿灯中的员工识别卡与通信基站进行无线数据传输,每个通信基站的无线监控范围为200 米 左右,每个通信基站通过 CAN-TTLG 传输接口与井上中心站计算机构成主从式 RS485通信网络交换数据,系统组成框图见图 1 。
图中通信基站为单片机系统,单片机的串口直接与 CAN-TTLG 传输接口的 TTL 端口连接。在总线的分支处须加装 ECANG中继器,通信线采用截面积为 1.5 mm 2 铜芯双绞线,型号为 PUYVP ,导线直流电阻不大于 12.5Ω/Km,线间分布电容不大于 0.06uf/Km ,安全标志准用证号为 20021946 。
请注意正确设置终端电阻:每一段总线的头和尾的终端电阻开关设置到“ R ”,中间的其它节点的终端电阻开关设置到“ OFF”,分支处的中继器在原总线中的地位是一个节点(终端电阻为“ OFF ”),在分支后的新总线中的地位则是终端(终端电阻为“ R”)