6ES7214-2AD23-0XB8当天发货
1引言
艾默生网络能源有限公司中试部生产线(以下简称中试生产线)是建于1998年的一条整体呈长方形循环运行的产品装配线。生产线采用PLC自动控制系统对整个生产流程进行控制,操作人员可通过选择运行模式来将整条生产线划分为1~3个小段,各段分别独立及组合运行;可手动/自动切换运行;具有多种故障报警灯指示。目前PLC采用艾默生自己制造的EC20型产品,该型产品指令丰富,编程方便,运行可靠,兼容性强,能够较好的满足电子行业生产的应用。
2系统设计
2.1装配线平面布局
图1为生产线的平面布置图。
图1 中试生产线平面图
2.2中试生产线设备构成和功能简述
(1)中试生产线由两条长长的平行传送带A和B作为其主体设备,生产用的工装台就放置在这两条传送带上,依次顺序运行到一个个装配测试工位。两条传送带A和B运行方向工装台就是从A这边去,从B那边回。
(2)传送带A和B两端通过末端的单向移载传送带连通成环形的整体,工装台在运行到某一条传送带的末端,就通过末端的单向移载传送带转移到另一条传送带的起点。图1中左边的末端单向移载传送带简称“左一”,右边的末端单向移载传送带简称“右一”。
(3)在传送带A和B之间,还有两条中间的双向移载传送带,左边的简称“左二”,右边的简称“右二”。通过选择运行模式,这两条双向移载传送带可以投入运行,在从而实现将生产线分解成1~3小段组合运行的功能。这样可以在生产线各小段分别安排不同工序流程的多种产品进行加工,提高了生产效率,满足多产品排产的要求。
(4)图1中左边为控制柜,内装PLC及其外围输入输出电路,还有电机主电路的设备,包括变频器、空气开关、接触器等。
(5)在传送带中,布置了很多的行程开关、微动开关,用于检测工装台运行的位置,转换成为开关量数字信号输入PLC控制器,使PLC能根据这些工装台的位置进行运行程序的运算和控制输出。
(6)在装配测试工位上,还有一些手自动转换开关、脚踏开关、阻挡气缸释放按钮等,多是开关量数字信号输入(除了气缸按钮不是),可通过这些装置人工操作工装台和传送带的运行。
(7)电机是由PLC输出的开关信号来进行启停控制的;气缸的顶升和下降是由电磁阀控制生产用压缩空气对气缸的进气和排气来实现的,而电磁阀则也是由PLC输出开关信号来控制的。
(8)A和B传送带的运行速度分别由两台变频器来调节速度大小,运行中采用定速运行,满足运行工艺要求。
2.3运行和控制流程
(1)上电后A和B传送带并行反向运行,其速度由变频器面板设置,固定运行,调试成功后不需要更改。
(2)两端的移载传送带负责把工装台在两条A和B传送带之间循环移载。例如当工装台沿A线运行到“右一”前A1位置碰到检测的行程开关,则当“右一”处于空闲时(无工装台在上面,也没有工装台堆积在B传送带起点B1时),“右一”将会进入单向移载程序。这时工装台继续运行到就位位置A1’触动行程开关,则“右一”气缸会顶升,把工装台顶起来,“右一”传送带启动运行,把工装台送到对面的B1起点,气缸放气,工装台放下。这就完成了一次单向移载。“左一”运行方式同上述方式的顺序是一致的。
(3)在选择不同的小段组合工作运行模式时,如果两条传送带被分成两段或三段循环运行,则中间的两段移载传送带负责把工装分别在各自的循环路径上移载,实现分段运行。例如当工装台沿A传送带运行到“左二”前位置A3,则开始进行移载检测,如果“左二”处于空闲时(无工装台在上面,也没有工装台堆积在B传送带出口点B3时),“左二”将会进入移载程序,这时工装台继续运行到就位位置A4触动行程开关,则“右一”气缸会顶升,把工装台顶起来,“右一”传送带启动运行,把工装台送到对面的B4点,气缸放气,工装台放下。这就完成了一次A向B的工装台移载。而对面的工装台也可按相仿的顺序从B5点转移到A5点。
(4)中间移载传送带根据各循环路径上工装到位的先后顺序来排队,先到先走,解决两边冲突的问题。
(5)移载传送带通过气缸顶升和皮带滚轮传送来实现工装移载。
(6)现场有手/自动转换开关、脚踏开关用以实现手动操作。
(7)整条线运行前先根据要求选择运行模式(即小段组合运行方式)。
3PLC控制设计
3.1PLC配置设计
控制柜是整个试生产线的中核心,其中关键的设备是PLC。中试生产线选用的是艾默生网络能源有限公司的新产品EC20系列的PLC及扩展模块。
EC20系列PLC是高性能的通用PLC可扩展多个模块,扩展模块有数字型、模拟型、温度型的模块。
EC20的编程采用界面友好的窗口软件,支持多种编程方式(梯形图、指令列表、顺序功能图),方便地监控和调试,可在线修改程序。
(1)PLC设备配置
1个主模块EC20-3232BRA,继电器型输出,220VAC电源,32输入和32输出;
1个扩展模块EC20-0808ER,继电器型输出,8输入和8输出。
(2)输入设备配置
输入设备有:
●旋臂式行程开关,用于工装台的位置检测;
●限位开关,用于工装台、运动机械、气缸的到位检测;
●脚踏开关,用于装配工位上的人工操作;
●转换开关,用于操作模式的选择,在控制柜和装配工位上,控制柜上是整体运行模式的选择,装配工位上是手/自动切换。EC20输入端是漏型输入,输入设备采用EC20模块的COM点为输入接线回路端。
(3)输出设备配置
输出设备有:
●继电器-电磁阀-气缸,PLC输出点通过控制继电器来控制电磁阀,电磁阀再控制气缸的进气和排气,从而实现气缸的顶升和下降,继电器-电磁阀-气缸的组合是通过电气输出的接点控制气动操作设备的一种有效手段;
●继电器-接触器,PLC输出点通过控制继电器来控制接触器,从而实现电机的启停操作、设备的开关及其它电路的通断,继电器-接触器的组合是用小容量的输出点来控制大容量的电气回路的正确方法;
●继电器,PLC部分输出控制可通过继电器直接进行,如指示灯、蜂鸣器等小容量电路。
一般情况下要注意PLC的输出点不应用于直接接入和控制各种被控制电气回路,要通过继电器等元件来提高控制容量,以及起到隔离的作用。
3.2PLC的顺序步骤程序设计要点
环形生产线的运行,主要的流程都是按顺序进行操作的。大多数情况下工程技术人员采用的是梯形图的编程方式,也有少量采用指令列表的方式。顺序功能图的方式还不十分为广大技术人员熟悉。这里讨论的是采用梯形图编程时的顺序步骤程序设计。
在编程前,需要把设备的流程转变为顺序的逻辑流程图。第二节中所讨论的流程,是一种操作的外在现象和设计思想,而程序的逻辑流程图,则是准确到包含以下及其他未说明的jingque设计:输入检测和受控设备的动作配合、步骤的准确衔接、操作的延时长短设置、操作的条件和限定、对人和设备保护防护设限、动作先后判断及优先选择、故障的诊断和显示、故障后的保护和恢复等。
如果设计和编制程序时,不编制流程和顺序控制点,不设置顺序控制点的代表元件,则程序做出来的可读性、可维护性会很差。比如一台电机的启动,如果仅是套用一堆输入、延时、条件、限制逻辑在PLC输出线圈之前,其中没有一个代表顺序的触点元件,那么就是上述无序编程的典型做法。当程序点数增多,后就可能导致程序的编制难以控制,出错可能性大,调试非常困难、维护和调整难以下手。
中试生产线的编程,采用了两项主要的编程方法。
(1)顺序步骤程序设计
顺序步骤程序设计,是将一长串流程分解为一个个步骤,每个步骤单独完成一项逻辑运算和动作。在每个步骤上,都设置一个人为的标志位,用以明确表示当前运行的步骤,并通过此标志位限定设备的输出,达到使整个系统按照步骤严格运行的目的;并使得整个程序的条理清晰,各步骤逻辑简洁明确,有利于日后的维护和修改。
如图2为中试生产线上“左一”单向移载传送带的编程示例:
图2 生产线的“左一”梯形图
如图2中所示,“左一”单向移载传送带的流程划分为五个步骤,分别以标志位M100、M101、M102、M103、M106来表示。在运行中,M100~M106顺序地被置位,在每个步骤中,相应的操作运算由相应的标志位来开通,使得设备运行得以按顺序进行,程序脉络十分清晰。
例如第1行,当X47置位,表明工装台进入了图1中“左一”的B2位置,当A2处无工装板积压,则M100就被置位并自保持,“左一”开始进行这块工装台的移载操作(步骤M100)。到了第2行,Y21会因为M100置位而复位,使该Y21对应的阻板气缸下降,将这块工装台放行,随B传送带进入“左一”传送带上。第3、4行,当工装台进入“左一”完毕(此时触动了X44行程开关),延时1s(T1时间继电器),就根据条件将M101置位并自保持,程序进入步骤M101。可见,程序将会按顺序进行,直到工装板被准确送出“左一”传送带为止。
到了步骤M106,M106短暂地置位后,将在下一个扫描周期内复位M100和T0,使得M100~103全部步骤都复位,系统就开始等待下一次移载操作。
(2)状态标志替代方法
在“左二”和“右二”双向移载传送带的操作时,有可能会出现A线和B线两块工装台到达的现象。在这种情况下,“左二”、“右二”如何处理这个矛盾?哪个工装台会先运行?这里,就有个优先状态标志的设置和判断。如果两边各用一个行程开关来置位相应标志位,程序并不好写,因为置位后的标志位没有“优先”的特征,都是“1”,还是会造成混乱。如果用“输入端中断”来编程,则会因为各种原因(如输入误动作)导致系统的错误操作—在这种生产线上是很容易出现输入的误动作的。
在这里,程序设计者用了一个状态标志替代方法,用2个累加数的大小来代表工装台,如图3所示。
图3 改进后的梯形图
如图3所示,程序中采用了D100和D102两个32位长整型寄存器用来做累加比较。当工装台进入时图1中的A3、B3时(这个“”还是有些微差别的),如图3所示的程序,M200和M250都置位,A和B两边都进入了移载程序的步,第4、5行就是对D100和D102进行累加,则当运行到第6行时,D100和D102的差别比较就会出来了。在D100大于和等于D102时,M120被置位;在D100小于D102时,M121被置位。这样,通过累加和比较,会得出一个优先的判断并固定用两个标志位M120及M121来表示(实际上,这样编程就能得到“先到者优先”的结果,现场所谓工装台“”达到对PLC来说还是非的)。随后的编程则将两边的步骤可以分开来写,并且还能相互添加一些联锁,保证两边的步骤不互相干扰。
4 结束语
在PLC顺序控制应用大多数是在机械行业。目前电子设备装配生产流水线市场上,主流的PLC产品是以三菱为首的日系品牌,包括松下、欧姆龙等,还有西门子S7-200、B&R等等品牌也有一席之地。艾默生EC20的PLC在输入输出、指令、编程元件资源、中断、指令速度上,与目前市场上的多种产品有较好的兼容性,在编程环境和文档上以中文平台为基本开发思想,具有通用的友好界面和操作方式。设备制造类的用户可以很快地掌握艾默生产品的应用和编程。在设计上,性能要比同级别的各种产品高,比如指令数量、中断源、高速计数等。在这种装配线上,采用艾默生的产品,会是一个很好的突破口。
在这些场合应用中,由于生产线可能会长期运行,其可靠性要求要较高;有可能会因为用户生产产品和工艺的变更,对生产线可能会要求做修改、改造,PLC需要考虑生产线改造时有一定的兼容性、扩展性
引言
为了延长PLC控制系统的寿命,在系统设计和生产使用中要对该系统的设备消耗、元器件设备故障发生点有较明白的估计,也就是说,要知道整个系统哪些部件容易出故障,以便采取措施。现以我厂特种水泥1号线的PLC过程控制系统为例,对PLC过程控制系统故障分布规律进行分析,希望能对PLC过程控制系统的系统设计和U常维护有所帮助。
1系统故障的概念
系统故障一般指整个生产控制系统失效的总和,它又可分为PLC故障和现场生产控制设备故障两部分。PLC系统包括中央处理器、主机箱、扩展机箱、I/O模块及相关的网络和外部设备。现场生产控制设备包括I/O端口和现场控制检测设备,如继电器、接触器、阀门、电动机等。
2系统的故障统计及分析处理
2.1我厂特种水泥1号线过程控制系统简介
2000年该系统改造时采用日本二菱公司的A2系列PIC为核心组成的PLC过程控制系统。系统配置如图1。
图1 系统配置框图
该系统有2个集中控制室:窑尾控制室和窑头控制室,其中窑头控制室为主站;2个现场工作站:窑尾生料自动配料工作站和窑尾成球盘自动加水成球工作站;2个电视监控系统:预热器进口下料监控和窑头电视看火。现场工作站是独立的微机自动控制系统,它与主站只进行模拟量的通讯和开关量的联锁。主站与从站间采用帧同步全双工通讯方式:
2.2系统故障数据的统计
该系统运行近3年来PLC故障统计如表1。
现场控制设备故障统计如表2。
经统计,系统故障共计126次,其中PLC的故障比例约为4.7%,现场部分故障比例约为95.3%,:对照其他PLC过程控制系统的故障数据,并考虑该系统运行时间不是很长,该比例比较接近一般PLC过程控制系统的故障分布规律,有一定的普遍性。一般来讲PIC部分的故障比例约为5%,现场控制设备的故障比例约为95%。PLC过程控制系统故障分布的估计图[1]如图2。
图2 系统的故障分布
2.3系统故障分析及处理
2.3.1PLC主机系统
PLC主机系统容易发生故障的地方一般在电源系统和通讯网络系统,电源在连续工作、散热中,电压和电流的波动冲击是不可避免的。通讯及网络受外部干扰的可能性大,外部环境是造成通讯外部设备故障的大因素之一。系统总线的损坏主要由于现在PLC多为插件结构,长期使用插拔模块会造成局部印刷板或底板、接插件接口等处的总线损坏,在空气温度变化、湿度变化的影响下,总线的塑料老化、印刷线路的老化、接触点的氧化等都是系统总线损耗的原因。在系统设计和处理系统故障的时候要考虑到空气、尘埃、紫外线等因素对设备的破坏。目前PLC的主存储器大多采用可擦写ROM,其使用寿命除了主要与制作工艺相关外,还和底板的供电、CPU模块工艺水平有关。而PLC的中央处理器目前都采用高性能的处理芯片,故障率已经大大下降。对于PLC主机系统的故障的预防及处理主要是提高集中控制室的管理水平,加装降温措施,定期除尘,使PLC的外部环境符合其安装运行要求;在系统维修时,严格按照操作规程进行操作,谨防人为的对主机系统造成损害。
2.3.2PLC的I/O端口
PLC大的薄弱环节在I/O端口。PLC的技术优势在于其I/O端口,在主机系统的技术水平相差无几的情况下,I/O模块是体现PLC性能的关键部件,它也是PLC损坏中的突出环节。要减少I/O模块的故障就要减少外部各种干扰对其影响,要按照其使用的要求进行使用,不可随意减少其外部保护设备,分析主要的干扰因素,对主要干扰源要进行隔离或处理。
2.3.3现场控制设备
在整个过程控制系统中容易发生故障地点在现场,表2列出了现场中容易出故障的几个方面。
1)类故障点(也是故障多的地点)在继电器、接触器。如该生产线PLC控制系统的日常维护中,电气备件消耗量大的为各类继电器或空气开关。主要原因除产品本身外,就是现场环境比较恶劣,接触器触点易打火或氧化,发热变形直至不能使用。在该生产线上所有现场的控制箱都是选用密闭性较好的盘柜,其内部元器件较其他采用敞开式盘柜内元器件的使用寿命明显要长。减少此类故障应尽量选用高性能继电器,改善元器件使用环境,减少更换的频率,以减少其对系统运行的影响。
2)第二类故障多发点在阀门或闸板这一类的设备上,因为这类设备的关键执行部位,相对的位移一般较大,或者要经过电气转换等几个步骤才能完成阀门或闸板的位置转换,或者利用电动执行机构推拉阀门或闸板的位置转换,机械、电气、液压等各环节稍有不到位就会产生误差或故障。长期使用缺乏维护,机械、电气失灵是故障产生的主要原因,在系统运行时要加强对此类设备的巡检,发现问题及时处理。我厂对此类设备建立了严格的点检制度,经常检查阀门是否变形,执行机构是否灵活可用,控制器是否有效等,很好地保证了整个控制系统的有效性。
3)第三类故障点可能发生在开关、极限位置、安全保护和现场操作上的一些元件或设备上,其原因可能是因为长期磨损,也可能是长期不用而锈蚀老化。如该生产线窑尾料球储库上的布料行走车来回移动频繁,现场粉尘较大,接近开关触点出现变形、氧化、粉尘堵塞等从而导致触点接触不好或机构动作不灵敏。对于这类设备故障的处理主要体现在定期维护,使设备时刻处于完好状态。对于限位开关尤其是重型设备上的限位开关除了定期检修外,还要在设计的过程中加入多重的保护措施。
4)第四类故障点可能发生在PLC系统中的子设备,如接线盒、线端子、螺栓螺母等处。这类故障产生的原因除了设备本身的制作工艺原因外还和安装工艺有关,如有人认为电线和螺钉连接是压的越紧越好,但在二次维修时很容易导致拆卸困难,大力拆卸时容易造成连接件及其附近部件的损害。长期的打火、锈蚀等也是造成故障的原因。根据工程经验,这类故障一般是很难发现和维修的。在设备的安装和维修中一定要按照安装要求的安装工艺进行,不留设备隐患。
5)第五类故障点是传感器和仪表,这类故障在控制系统中一般反映在信号的不正常。这类设备安装时信号线的屏蔽层应单端可靠接地,并尽量与动力电缆分开敷设,特别是高干扰的变频器输出电缆,要在PIC内部进行软件滤波。这类故障的发现及处理也和日常点巡检有关,发现问题应及时处理。
6)第六类故障主要是电源、地线和信号线的噪声(干扰),问题的解决或改善主要在于工程设计时的经验和日常维护中的观察分析。
要减小故障率,很重要的一点是要重视工厂工艺和安全操作规程,在日常的工作中要遵守工艺和安全操作规程,严格执行—些相关的规定,如保持集中控制室的环境等等,在生产中也要加强这些方面的霄理。
3 结束语
过程控制系统本身是一个完整的系统,在分析故障或处理故障时也要注意系统性,单独的对某一部分的优化有时并不能提高系统的整体性能。如过分追求元器件的精度而不考虑实际的需要以及和相关设备精度的匹配,将徒然增加系统成本。在日常维护中也有过把系统越改越复杂的现象,如采用复杂的控制方式和设备来实现本可以用简单装置来实现的控制,违背了经济、简单、实用的原则,并可能会增加故障率,这也是要注意的地方