6ES7223-1BL22-0XA8优质产品
电枢回路为三相桥式电路:
(1)单象限工作装置的功率部分电路为三相全控桥B6C。
(2)四象限工作装置的功率部分为两个三相全控桥(B6)A(B6)C。
励磁回路采用单相半控桥B2HZ,额定电流15-800A的装置(交流输入电压400V时,电流至1200A),电枢和励磁回路的功率部分为电绝缘晶闸管模块,其散热器不带电。更大电流或输入电压高的装置,电枢回路的功率部分为平板式晶闸管。这时散热器是带电的。功率部分的所有接线端子都在前面。
1.3通讯口
下列串行接口可供使用:
(1)UX300插头是一个串行接口,此接口按RS232或RS485标准执行USS协议,可用于连接选件操作面板0P1S或通过PC调试SMOVIS。
(2)主电子子上的串行接口,RS485双芯线或4芯线用于USS通信协议或装置对装置连接。
(3)在端于扩充板选件端子上的串行接口,RS485双芯线或4芯线,用于USS通信协议或装置对装置连接。
(4)通过附加卡(选件)的PROFIBUS-DP。
(5)经附加卡(选件)SIMOlink与光纤电缆连接。
1 变频器和交流电机组成的交流调速系统具有更宽的允许电压波动范围、更
小的体积、更强的通讯能力,更优良的调速性能,在工矿企业中得到了广泛的应用。在变频器的应用中,也会遇到各种各样的故障现象,借助于变频器完善的自诊断保护功能,并通过平时工作中积累的经验来tigao处理变频器故障的技术水平,这将明显地缩短对变频器故障处理的时间。我公司粘胶短纤维生产线上共使用西门子6SE70系列变频器260多台,在应用中因受周围环境条件,如:温度、湿度、粉尘、硫化氢腐蚀性气体等因素的影响,出现的各种故障报警现象也很多,在维修过程中我们积累了一些故障处理、维修维护保养的经验,下面对西门子6SE70系列变频器有代表性的故障现象进行分析介绍。此文中电路板图为维修过程中实际测绘下来的(因文中章节多次涉及同一电子器件,电路板图未按照顺序排列,论述问题涉及到的部分电路,请参见相关电路板图),仅代表个人意见,供大家在维修时参考。
2 变频器故障实例的处理变频器操作手册上的故障对策表中介绍的皆为较常见的故障,在出现未涉及的一些代码时应对变频器作全面检查。变频器的维修方式采用在线电压检测及直流电阻测量两种方法,测量各关键点电压并与正常值进行比较,将故障范围缩小,进行分析判断;测量元器件直流电阻,根据贴片电阻色环进行判断比较,将怀疑元器件拆下,再测量元器件直流电阻,采用比较法来确定元器件的好坏。2.1 西门子6SE7016-1TA61-Z变频器的操作控制面板PMU液晶显示屏上显示字母“E"报警变频器液晶显示屏上出现“E"报警时,变频器不能工作,按P键及重新停、送电均无效,查操作手册又无相关的介绍,在检查外接DC24V电源时,发现电压较低,解决后,变频器工作正常。出现“E"报警一般来讲是CUVC板损坏,更换一块新CUVC板就能正常。“E"报警有以下几种情况是由底板及CUVC通讯板故障引起的:(1)故障现象:操作控制面板PMU液晶显示屏显示“E"报警检查处理(参见图1、图2):更换一块新CUVC板送电开机,液晶显示屏仍显示“E"报警,说明故障原因不在CUVC板而在底板。检查底板,用数字万用表测外接DC24V电压正常,检测集成块N3基准电压不正常,集成块N220脚输出电压为0.1V,明显偏低,正常值应为15V,查集成块N2的1脚为11.3V,8脚为0.20V,11脚电源输入为27.5V,正常。经分析判断1脚、8脚、20脚电压值都不正常。测集成块N3的1脚电压为0.31V,2脚电压为1.8V,电压值也都偏低。用热风枪拆下N3集成块MC340,测2脚与3脚之间的电阻为84Ω。更换一块新N3集成块MC340后,测各引脚电压,1脚为2.1V,2脚为5.1V,正常。测N2集成块各脚电压也都恢复正常。集成块N3输出电压不正常,引起N2集成块各脚电压也出现偏移。恢复变频器接线,输入参数,启动变频器运行正常。
(2)故障现象:操作控制面板PMU液晶显示屏显示“E"报警检查处理(参见图1、图2):用数字万用表测底板N2、N3集成块各脚电压,N3的1脚N2的8脚电压都偏低,测V28三极管的基极偏置电阻4.7kΩ已变值为150kΩ。更换新贴片电阻,测N2、N3各脚电压正常。因V28基极偏置电阻变值,导致V28三极管截,造成N2、N3集成块不能正常工作。(3)故障现象:操作控制面板PMU板液晶显示屏显示“E"报警检查处理:一台“E"报警的变频器,将变频器原CUVC板上CBT通讯板拆下,装在新CUVC板上,变频器装好CUVC板,启动后。液晶显示屏仍显示“E"报警。拆下CUVC板检查发现CBT通讯板上贴片电阻烧坏。更换新CBT通讯板后,变频器启动工作正常。(4)故障现象:操作控制面板PMU板液晶显示屏显示“E"报警检查处理(参见图1、图2、图4):检查底板电源块N2(L4974A)第1脚的开机电压为11.32V,正常值为26.7V;第20脚输出电压为0.117V,正常值为15.31V;基准电压块N3(MC340)第1脚电压为0.315V,正常值为2.1V;第2脚的电压值在1.5~1.8V之间变化,而正常值为5.1V.检查继电器K4,线圈电路串联两支二极管V16、V15,电阻值分别为3.67Ω和5.5Ω,已经短路,V28(5C)三极管基极电阻由正常值4.7kΩ变为150kΩ,已经烧坏。更换新的电阻和二极管后,运行正常。2.2 西门子6SE70系列变频器的操作控制面板PMU液晶显示屏上无显示,“黑屏"(1)故障现象:西门子6SE7016-1TA61-Z变频器操作控制面板PMU液晶显示屏“黑屏"
检查处理(参见图3、图1、图2):检查底板V34场效应管K2225,发现栅极保护贴片电阻24Ω变值为500kΩ,已损坏。检测N2集成块的20脚无电压,1脚为11.3V,N3集成块MC340脚为4V,2脚为3.3V.用热风枪将N3集成块MC340拆下测量1脚与3脚之间的阻值变为9kΩ,正常应为500kΩ。更换新的N3集成块MC340和24Ω贴片电阻。上电测试N2、N3集成块各引脚电压,正常。恢复接线,运行正常。
操作控制面板PMU液晶显示屏“黑屏"故障,大部分与底板V34电源管控制极24Ω保护贴片电阻变值有直接关系,变值后的电阻值一般为500kΩ~1MΩ之间,有的电阻值变为无穷大。(2)故障现象:操作控制面板PMU液晶显示屏“黑屏"检查处理(参见图4、图3、图2):检查底板,测量K4继电器线圈并联续流二极管V20,与K4线圈串接二极管V16击穿短路,测N7电源块L7824损坏,N4集成块UC3844AN1脚对地电阻500Ω,正常值应为15kΩ。更换同型号二极管2支、N4集成块UC3844AN、N7电源块L7824后,测试各点电压正常。
(3)故障现象:操作控制面板PMU液晶显示屏“黑屏" 检查处理(参见图3):检查底板,测量N4集成块UC3844AN4-8脚之间的7.5KΩ电阻烧坏,V34场效应管K2225栅极限流电阻R133变值为720kΩ,用热风枪将贴片电阻拆下,更换新贴片电阻。上电测试各点电压,正常。恢复接线,送电运行正常。(4)故障现象:操作控制面板PMU液晶显示屏“黑屏"检查处理(参见图3、图5):检查底板,测量V34场效应管K2225,发现栅极保护贴片电阻24Ω变值为430kΩ,电源变压器T6二次绕组之间,经V58串联连接的5只相并联的100Ω电阻值为33Ω,拆下测100Ω电阻其中一只已变值为10MΩ,另一只电阻变值为1MΩ。更换24Ω、100Ω电阻。
(5)故障现象:操作控制面板PMU液晶显示屏“黑屏"检查处理:检查底板,25A正负熔断器F1、F2全部熔断(见图6),测量IGBT模块输出端U相与V相之间,电阻值为11Ω,已经短路,(正常阻值应该为210kΩ),IGBT模块触发部分触发板A12、A32、A22的3脚与4脚和7脚、5脚、8脚的电阻值变为1.9Ω,已经短路。更换同型号六单元IGBT模块(型号为BSM15G120DN12)与触发电路板A12、A32、A22后,恢复接线,变频器上电,测量各个电源输出电压正常,IGBT模块6个触发电路脚电压为-5.1V,正常,显示正常。
(6)故障现象:操作控制面板PMU液晶显示屏“黑屏"检查处理(参见图3):检查底板电源部分,查N4(UC3844)PWM脉宽调制集成块,测量外接4脚振荡电阻原为7.5Ω,现在变为420kΩ,运行正常。(7)故障现象:操作控制面板PMU液晶显示屏“黑屏"检查处理(参见图3):检查底板:主开关电源开关管V34(K2225)栅极限流电阻R133(100Ω和24Ω)电阻烧坏,测量N4(3844)PWM集成块,3脚过流保护外接电阻由正常时的100Ω变为400kΩ,更换后,运行正常。(8)故障现象:操作控制面板PMU液晶显示屏“黑屏"检查处理(参见图3、图7、图10):检查底板开关电源,脉宽调制集成块N4,测量第4脚与第8脚振荡电阻由正常时的7.5kΩ变为420kΩ,第6脚输出电阻R133由正常时的100Ω变为300Ω,电压检测部分N1(TL084)第14脚输出外接电阻R203由正常时的47Ω变为544kΩ,触发板输出电阻IGBT第11脚接电阻R226由正常时的9Ω(两支18Ω电阻并联)变为144Ω,第4脚R214由正常时的18.5Ω变为21Ω,第3脚接电阻R126由正常时的9Ω变为18.3Ω,第1脚接电阻R116由正常时的9Ω变为12.6Ω,将上面的电阻重新更换后,运行正常。
(9)故障现象:操作控制面板PMU液晶显示屏“黑屏"检查处理(参见图3、图2):检查底板开关电源,开关管V34(K2255)场效应管栅极2000Ω限流电阻烧坏,V28(5C)三极管10kΩ和1.2kΩ基极电阻均烧坏,N3基准电压块MC340的*脚接1000Ω电阻烧坏,更换新电阻后,运行正常。(10)故障现象:操作控制面板PMU液晶显示屏“黑屏"
检查处理(参见图3):检查底板开关电源,开关管V34(K2255)和漏极电阻R400(10Ω)烧坏,其他正常,更换后,插好CUVC板,变频器上电,显示“008"开机,重新初始化,输入参数后,运行正常。(11)故障现象:操作控制面板PMU液晶显示屏“黑屏"检查处理(参见图1、图7):检查底板,上电,听到开关电源“咝咝"声音很大,测量各输出点电压,集成块N2的20脚输出电压稍微偏低为14.95V,正常值为15.30V,其他各点输出电压正常。停电,测量电流检测板A1,发现4脚与7脚之间电阻值为2.84Ω,正常值约为3.1kΩ,更换一块电流检测板A1后,变频器上电显示“F029",测量A1板的1脚与4脚之间的电阻值为无穷大,正常值为25Ω,拆下U相电流变送器T4,测量T4与电流检测板A1的1脚、4脚并接的线圈电阻,阻值为无限大,线圈断路(线圈的正常阻值为25Ω)。更换新的电流变送器T4后,变频器上电,运行正常。(12)故障现象:操作控制面板PMU液晶显示屏“黑屏"检查处理(参见图8、图7):检查,上电,自检完成后,内部继电器K3吸一下就跳,连接X9的7点与9点闭合一下马上断开(K3的常开点外接主电路接触器线圈)测量各点输出电压正常,断电测量电流检测板A1的第4脚与第6脚之间的电阻值为2140Ω,正常电阻值为3200Ω,更换电流检测板后,运行正常。
(13)故障现象:操作控制面板PMU液晶显示屏“黑屏"检查处理(参见图9):检查底板、二次电源,逆变开关管V2(IRF520)场效应管,栅极限流电阻由原正常阻值10Ω变为590kΩ,拆下测量为11MΩ,更换后,运行正常。
2.3西门子变频器的操作控制面板PMU液晶显示屏上显示“008",开机 变频器起动自检完毕,出现开机“008"报警,008是启动,一般,故障复位以后,要将“使能"、“ON/OFF1"置0,如果仍然在008状态,要检查系统的“OFF2"是不是置0了;或者硬件的“紧急停车"端子开路了;或者功率定义错了(例如功率定义应为43,结果定义成36);zui后检查比较状态字1,位6的状态字有没有问题,如果状态字正常,应检查变频器电路板。(1)故障现象:操作控制面板PMU液晶显示屏显示“008"检查处理(参见图10):检查触发板A21集成块,9脚外接7.5kΩ电阻,变值为298kΩ。更换新电阻后,运行正常。(2)故障现象:操作控制面板PMU液晶显示屏显示“008"开机不能复位。检查处理(参见图8、图5):将变频器重新初始化,输入参数,显示“009"开机准备状态。变频器带负载上电,加入给定频率,输出正常。5min后,K3继电器带外接主接触器出现断续的掉电声,停电检查变频器,更换一块新CUVC板,开机后变频器故障依旧,停电检查变频器主板,检测到N5(MC33167T)集成块时,电源发出“咝咝"声,断电,用万用表电阻挡检查,发现接1脚100kΩ电阻烧坏。底板控制K3继电器三极管V12基极电阻变值为4kΩ,正常值应为2.2kΩ。更换损坏的贴片电阻后,运行正常。(3)西门子6SE7023-4TC61-E变频器操作控制面板PMU显示屏显示“OO8"故障维修检查处理(参见图2、图1、图5):检查底板电源N3正常,N2第20脚输出电压14.50V,稍微偏低,正常值为15.30V,N5第二脚电压为5.6V,测量使电源发出“咝咝"响声,查为第1脚处外接100kΩ电阻、CUVC板连接器X239A第20脚接3.3kΩ电阻烧坏,更换后,变频器上电,显示“009",启动后,正常。2.4 西门子6SE7021-OTA61-Z变频器的操作控制面板PMU液晶显示屏上显示“F008"报警(1)故障现象:操作控制面板PMU液晶显示屏显示“F008",复位后显示“009"开机准备,变频器起动,加入给定频率20s后,显示“F008"报警检查处理(参见图7):检查变频器电压、电流检测集成块N1(TL084)接3脚的电阻R209由4.7Ω变值为888kΩ,接14脚电阻R203由4.7Ω变值为185kΩ。更换新电阻后,正常。(2)故障现象:上电自检完后,变频器操作控制面板PMU显示屏显示“FOO8",复位后显示“OO9",但不能启动。检查处理(参见图10):检查触发电路检测部分三极管V17(5C)集电极电阻R152,阻值为1.69kΩ,正常时的电阻值应为1.275kΩ(4只5.1kΩ贴片电阻并联),其中一只电阻烧坏,更换一只新电阻后,正常。
(3)故障现象:上电自检完后,变频器操作控制面板PMU显示屏显示“FOO8",复位后显示“OO9",启动后给定频率,20s后跳闸,显示“FOO8".检查处理(参见图7):检查电流电压的检测部分运算放大器N1(TL084)集成块第7脚的输出外接电阻R209,电阻值由正常时的47Ω变为888kΩ,第14脚输出外接电阻R203,电阻值由正常值47Ω变为185kΩ,更换新电阻后,正常。(4)故障现象:操作控制面板PMU显示屏显示“F008"报警,变频器上电自检,显示“009"开机准备状态,随后显示“F008"不能启动。检查处理(参见图7):检查底板电压、电流检测部分,发现R56在线测量阻值为4.3kΩ,正常值为900Ω,用热风枪拆下测量阻值为1MΩ,已经烧坏。更换新电阻值后,运行正常。2.5 西门子6SE70系列变频器的操作控制面板PMU液晶显示屏上显示“F011",报警(1)故障现象:操作控制面板PMU液晶显示屏显示“F011"报警,不能复位检查处理(参见图7):电压检测块N1(TL084)7脚外接47Ω电阻变为15Ω,V2(IRF520)G极保护电阻由正常阻值10Ω变为340kΩ,更换后,运行正常。(2)故障现象:操作控制面板PMU液晶显示屏显示“F011"报警,且变频器有焦糊味。检查处理(参见图1、图5、图10):测量N2第20脚输出电压只有5.1V,1脚输出电压为16.5V,检查发现N2第9脚接1kΩ电阻烧坏,N5第1脚接100kΩ电阻变为20MΩ,3脚外接10Ω电阻变为2MΩ,触发板A22第3脚与第4脚接4.7kΩ电阻烧坏,更换上述电阻后,运行正常。2.6 6SE7022-6TA61-E 变频器上电初始运行正常,10s后就跳闸,显示“F006"检查处理(参见图10):检查变频器底板,测量各点电压正常,未发现问题,后来将IGBT模块、触发电路板A21、三极管V17(5C)、各个管脚重新焊接后,运行正常。
3 结束语 在西门子6SE70变频器的常见维修中,由于其电路板上选用的大都是贴片电阻、电容、贴片二极管、三极管、IC芯
片,因受电路板体积所限,所选用元器件体积及功率都很小,因受周围环境温度的影响导致电路板散热不太好,引起的故障所占比例较大。再加上化纤行业粘胶短纤维生产现场含硫化氢腐蚀性气体,电气控制室为了减少腐蚀性气体的侵入采用封闭式的,因通风效果不好,导致电气控制室内温度升高,这也是6SE70变频器电路板小功率器件损坏的一个因素。为了解决以上问题,我公司专门上了一套空调系统,用正压新鲜风来改善环境条件。为了减少硫化氢腐蚀性气体对电路板上元器件的腐蚀,我们还采用电子线路板用喷涂胶,对变频器电路板表面作防腐涂层处理,有效地降低了变频器的故障率,tigao了使用效率。在日常维护时,一方面应注意检查电网电压,改善变频器、电机及线路的周边环境,定期清除变频器内部灰尘,通过加强设备管理zui大限度地降低变频器的故障率。另一方面应注意在维修过程中尽量减少静电的危害,较高的静电电压可能对电子元件造成损坏,在更换电路板及元器件时,应该佩戴防静电接地环和防静电腕带,没有条件时可以将防静电接地线缠绕于腕上。变频器的维修工作是一项理论知识、实践经验与操作水平的结合,它的技术水平代表着变频器的维修质量。我们要经常阅读一些有关的书报杂志,不断了解这些电子元器件所具备的功能和特点,开拓我们的思路,给我们维修工作以启迪,并将这些学到的知识应用于实际工作中,解决一些维修过程中无法解决的问题,使我们的技术水平不断tigao。
西门子6SE70工程型变频器,出现的比较多的故障有上电显示“E"的,有上电自检报F011、F029、还有启动就报F025的。
一般显示一个E的大部分都是开关电源故障,主要表现为开关电源的15V电源没有,其中开关电源部分比较容易出问题的几个点就是MT33167、4974电源脚两端的小电容,还有4974前端一个编号为Z8的小三极管(这个小三极管我自己碰到过好多回,这个管子一换*)。也有时显示一个E,开关电源部分没什么问题(我碰到过一回),怎么检查都是好的,接上CUVC板就不行,我碰到的一回就是在没有备用的CUVC板的情况下自己检查,发现CUVC板上所有的5V电源短路了,断开所有的5V芯片和电容后发先还短路,zui后没办法的情况下把三相检测芯片旁边的单片机吹下来才不得不承认一个事实,单片机短路了。
上电自检时报F011故障主要出在驱动和检测上面,驱动要是不好,或者不接IGBT那毫无疑问肯定会报警,70机的驱动采用的是陶瓷片封装的驱动厚膜,问题主要也就是出在上面,这个片子坏了其实也可以修的,只是在焊接时要特别小心,上面的焊盘和容易掉;再就是在厚膜片旁边有一个塑料封装的无极电容,当驱动损坏时也很容易击穿该小电容。当驱动静态驱动电压都正常的情况下,F011一般故障就出现在电流检测上面了,30KW以下的70机电流检测有一个专门的厚膜,通过厚膜经过一个A7的三极管给传感器供电,传感器的输出信号共同给一个084,经过084再给厚膜片检测,当变频器检测到有一个传感器信号不对时就会报F011,当检测一个正常一个没有时是不会报警的,我碰到几回都是这样的;30KW以下的小功率70机的传感器一般不会坏,在厚膜片及前端电路都正常的情况下报F011时zui大的可能就是厚膜片后面到084和传感器之间的A7的三极管故障和084的故障,当这个三极管故障时静态量都是好的,换了就没事了。当厚膜片有故障时也会报F011,这种厚膜片可以检测两路信号,分别检测两个传感器信号,两路是*分开的互不相干,经常只坏了一路,把两个传感器都装上有信号输入时就会报F011,可以通过卸传感器的办法检测出来。
F029故障就是找不到传感器信号,30KW以下的小功率70机把两个传感器都拆掉时就会报F029,一般自检报F029故障的可以从传感器开始往前查,我碰到的几回都是传感器前端的A7三极管坏掉了,当别的电路正常这两个管子坏时是显示F029,只坏一个时显示F011.
30KW以上的70机启动报F025:30KW以上的70机传感器是采用ABB生产的传感器,白色的,圆的,这两个传感器拆掉静态都不会报警的,在修30KW以上的70机时,要是U、V相的模块主回路损坏了就应该特别注意传感器是不是有问题,当这两个传感器都损坏,别的电路正常的情况下启动变频器时,变频器检测不到传感器信号会报F025,指示启动电流不到额定电流的12%.
以上都是我自己经常碰到的70机的故障和我的处理方法,有不同意见的朋友可以多交流,共同研究。
西门子 6SE70 维修一例 故障现象: 变频器有时工作正常,有时停机报警,显示故障 F023 代码。 故障分析与维修:说明书中所说故障是超过逆变器极限温度报警。按书中所说检查变频器周围温度不高,风扇运转很正常,也没有过载现象。于是怀疑温度传感器有问题,拆下温度传感器,用万用表测两端的压降,两个方向都是0.86伏左右正常,是热电耦形的,为了证明传感器好坏,把它装上一台机子上结果正常,这样问题肯定在信号处理回路中,详细检查所关联的回路,所有贴片电阻R 1 , R 2 , R 3 阻值都正常,从一台机上换过来一块 CPU 板试机,没发现问题,没办法只好把图中的小瓷片电容 C1换掉,结果通电显示正常,原来是小瓷片电容 C1 漏电才到起的过热保护
6SE70 西门子过电流维修 故障现象: 变频器通电流后显示正常,但如果启动,显示 F026 (过电流保护)。 故障分析与维修:查变频器使用手册,可知显示为过电流或变频器对地漏电,逐个检查主回路中器件,并加电测试没有发现问题,检查驱动电路和驱动 IGBT也正常,三相对地绝缘也没问题,zui后怀疑电流传感器有问题,但换上三个新的,故障还是原来过电流故障,证明原来的电流传感器是好的,给三个电流传感器的辅助电源正负15 伏也正常,问题也只能是电流检测放大处理哪一部分了,重新检查运放 LM084放大部分,发现有一个回路输出不正常,检查外部没发现有坏的元件,更换 LM084 后变频器恢复正常工作。 420 、 430系列西门子变频器维修心得 故障现象 R 、 S 、 T 三相输入短路,无显示。 故障分析与维修拆开机器就发现严重的短路现象,整流模块和 IGBT模块爆裂,短路造成的黑色积炭喷得到处都是,主回路两个继电器也爆开,主控板暂时没有发现问题,但驱动部分烧了好几处,储能大电容一部分都已发涨,电容板上的两颗大螺丝接触处全部烧焦,这就是420系列变频器的通病,因为所有电量都是要经过这两颗铁螺丝,一旦铁螺丝生锈,很容易引起电容的充放电不良,这样电容发热,漏电,发涨到zui后损坏重要器件就不在话下了,为了防止接触不良打火,在上螺丝焊上几股粗铜线并存螺丝位上好,维修触发板时不知道参数的,可以从控制板上完好的器件与损坏相同的对比,修复该板的正向电压为4.7 伏,负向电压为 -4.44 伏,更换损坏器件后,可以加电试验,试验步骤按主回路主控制空载,负载分别运行检查。加电试验前为保证器件安全,防止损坏重要器件,大容量暂时不要装止,用两只小容量电容代替,为了保护 IGBT ,电容到 IGBT的供电回路是串联一保白炽灯泡,这样就可以加大电容了,通电有后如果显示正常,可以启动变频器,再测量 6个触发市制脉冲,如果信号正常,就可以去掉电容与 IGBT之间的灯泡,装上大电容进行空载运行,正常后再接负载运行,经调试机器后一般恢复正常。
编程时应避免数量级相差太多的浮点数之间进行运算。很多人反映加法指令不好用了,很有可能就是数量级相差很多的实数进行了加法运算。
问题2:累计liuliang误差问题
对于积分算法,取小的矩形对liuliang进行累计,肯定是矩形划分越细,误差越小,*是不可能的。
问题3:liuliang计与PLC构成的系统的误差
liuliang计有多种多样,下面举些例子:
1、liuliang计本身没有累计liuliang功能,但可以把瞬时liuliang以模拟量的方式(例如4-20mA)输出。
此时累计liuliang的大误差可以估算为:
liuliang计本身误差liuliang计D/A误差模拟量模块A/D误差PLCliuliang累计算法误差假设上面所有误差都是1%,则后的误差约为:4.06%1.01*1.01*1.01*1.01=1.0406
对于某些liuliang计,本身的瞬时liuliang误差可能就是3%,这样的系统累计liuliang的误差可能还要大些。
2、liuliang计本身没有累计liuliang功能,但可以把瞬时liuliang以数字量的方式输出。
有些liuliang计提供数字量接口,可以连接PLC的数字量输入模板,liuliang计每流过一定liuliang后(例如0.1吨),此输入点就导通一次,PLC就把累计liuliang累加0.1吨即可。
此类系统避免了A/D,D/A转化的误差,以及PLC累计算法误差。会出现一定时间内累计liuliang不变化的情况,实时性不好(每0.1吨累积的时间)。
3、liuliang计本身有累计liuliang功能,可以把瞬时liuliang以模拟量的方式(例如4-20mA)输出,但无法将累计liuliang数值送出。
liuliang计本身累积liuliang的数值,后很有可能与PLC的累计liuliang数值相差很大,原因可能是多方面造成的,除去系统累计liuliang误差的因素,如果PLC系统检修时,liuliang计还计量,则PLC无法累积这部分liuliang。
4、liuliang计本身有累计liuliang功能,可以通过通信的方式,把瞬时liuliang及累计liuliang数值送给PLC。这种情况理想,但系统的成本也高。
常用的西门子PLC硬件详解
我们先来看看西门子:S7-1200在西门子PLC产品线中的定位。S7-1200处于中端定位,使用大多数应用环境,也拥有不错的性价比,这也是应用广泛的重要原因。
1、S7-1200的硬件构成
a、CPU模块介绍
b、CPU模块技术参数
c、CPU的共性:
集成的24V传感器/负载电源可供传感器和编码器使用,也可以用做输入回路的电源。
集成的2点模拟量输入(0~10V),输入电阻100kW,10位分辨率。
2点脉冲列输出(PTO)或脉宽调制(PWM)输出,高频率为100kHz。
有16个参数自整定的PID控制器。
4个时间延迟与循环中断,分辨率为1ms。
可以扩展3块通信模块和一块信号板,CPU可以用信号板扩展一路模拟量输出或高速数字量输入/输出。
d、CPU的3种版本:
CPU1214C外部接线图
衡阳西门子代理商
> 步骤三: 在STEP 7中组态PC Station
1) 打开SIMATICManager,通过File ? New创建一个新项目,如“MPIOPCDEMO"。通过Insert ? Station ? SimaticPc Station插入一个PC站。特别注意的是,要将PC Station默认名称“SIMATIC PCStation(1)"改为与Station Configuration Editor 中所命名的StationName名称相同,这里改名为“MPIOPC"。双击Configuration即可进入PC Station组态界面。
图10: STEP 7中创建新项目与建立Simatic PC Station
2) 在硬件组态中,从硬件目录窗口选择与已安装的Simatic net软件版本相符的硬件插入到与在StationConfiguration Editor配置的 PC硬件机架相对应的插槽中。
图11: PC Station硬件组态
3) 分配CP5613 网络参数
双击CP5613打开其属性对话框,将CP5613接口设为MPI,并用New按钮建立一个MPI网络,MPI地址与波特率的设置要与Station Configurator中对CP5613参数设置相同,过程如图12。
图12:CP5613参数设置
4) 完成PC站组件设置后,按下编译存盘按钮确定且存储当前组态配置
图13:组态的编译存盘
5) 编译无误后,点击“Configure Network"按钮,进入NetPro配置窗口。
图14:选择“Configure Network"按钮
6) 在NetPro网络配置中,用鼠标选择OPCServer后在连接表*行鼠标右键插入一个新的连接或通过“Insert>NewConnection"也可建立一个新连接。
图15:建立新连接
7) 如果在同一STEP 7项目中,所要连接的PLC站已经组态完成(OPCServer所要连接的MPI端口在同一MPI总线上已使能),在选择“Insert NewConnectio"后,连接会自动创建,不需以下步骤的设置,仅需确认连接属性即可。如果在项目中没有所要连接的对象(如本例),你必须在InsertNew Connection对话框中,选择“Unspecified"作为连接对象,并在连接属性中选择S7connection。点击OK确认或“Apply"。
图16:在网络配置(NetPro)中添加新连接