西门子S120连接电缆6SL3060-4AU00-0AA0
MZ2015自动磨床是轴承行业广泛使用的加工设备,用于轴承套圈内圆磨削,由于该机床的早期电气系统采用的是继电器─接触器控制和由二极管组成的矩阵顺序控制线路,电气元件较多,且可靠性差,电气故障频繁。故采用FXon-60MRPLC对其控制系统进行了改造。 1、系统的硬件设计 任何一种继电器系统都有三个部分组成,即输入部分,逻辑部分和输出部分。系统输入部分由所有行程开关、仪表触点、方式选择开关、控制按钮等组成。逻辑部分是指由各种继电器及其触点组成的实现一定逻辑功能的控制线路,输出部分包括电磁阀线圈,指示灯和接通各种负载的接触器线圈。在控制系统中使用PLC就是代替继电器控制系统中的逻辑线路部分。原MZ2015磨床的电气系统,所有行程开关(SQ1~SQ17),选择开关(SA3),仪表触点(KA1~KA4),控制按钮(SB2,SB5)等为系统的输入信号;而电磁阀线圈(YV1~YV13),指示灯,充磁信号等为系统的输出信号。系统的硬件构成如图1所示,为了节省输出点数,各电磁阀的状态指示灯并联在其线圈两端;系统的调整操作采用由PLC的Y1和Y2输出调整信号在外部经相应开关控制。为了保护PLC输出继电器,在电磁阀两端各并联一只二极管,防止在电感性负载断开时产生很高的感应电动势或浪涌电流对PLC输出点及内部电源的冲击,二极管的额定电流通常选为1A,额定电压大于电源电压的3倍。 2、软件设计 (1)程序结构 原机床包括自动、半自动、调整和长期修整4种工作方式,由**转换开关选择。用PLC改造后,此部分的接线要重新安排,可选用转换开关的两组触点SA3-1和SA3-2(对应PLC输入端子X20和X21),使其分别在4种工作情况下,满足表1所示的通断状态。 表1开关方式状态 表1中“0”表示断开,“1”表示接通。如用二进制表示X20 和X21的状态,即为00,01,10和11四种。如图2示,自动方式时驱动M10,半自动时驱动M11,调整时驱动M12,长修时驱动M13。这样可安排出图3的程序结构图。 (2)矩阵电路的编程处理 矩阵二极管顺序控制电路是原床电气系统中的重要组成部分,PLC梯形图的转换原理,如图4示。其动作如下: a.SA1合上,SA2打开,KA5线圈通电吸合并自锁,此时KA5线圈及R上的电压基本相等,约为12V,KA6线圈被短路脱吸。 根据上述要求可得出SA1、SA2与KA5、KA6的逻辑关系,如表2所示。从表2可看出,SA1是KA5的置位端,KA6的复位端;SA2是KA6的置位端,KA5的复位端。这种状态可由PLC内部的置位、复位指令来实现,其梯形图如图4示,图中M21相当于KA5,M22相当于KA6。 表2顺序逻辑控制 (3)编程调试 由于用PLC改造原机床电气系统是以不改变原控制功能为前提,此时可对原线路进行分块处理,对于MZ2015磨床,可分成输出处理程序,输入处理程序和顺序控制逻辑程序,这种处理对于程序调试和设备维修都有很大的方便,根据手动、长修、自动和半自动四种工作方式分别进行模拟运行。用开关模拟输入信号,开关的一端接入相对应的输入端点,另一端作为公共端接在PLC输入信号电源的负端。输入程序后,对照输入信号状态表,设置好原始状态情况下所有输入信号的状态;再按工步状态,扳动开关,观察输出端点指示灯在一个工作循环里的状态变化,并与工艺过程对照。由于程序较长,这里仅给出输出部分及二极管顺控电路所对应的梯形图,如图4、5示。 3、结束语 用可编程控制器改造旧机床电气系统,在现有企业里是非常现实的技术改造方案,具有投资省、见效快的特点。通过使用PLC改造该机床电气系统后,去掉了原机床的13只中间继电器,5只时间继电器,80只顺序控制二极管及20只电阻,使线路简化。由于PLC的高可靠性,输入输出部分还有信号指示,不仅使电气故障次数大大减少,还给准确判断电器故障的发生部位提供了很大的方便。 |
传统的鼠笼式异步电动机起、制动控制方式一般有四种,即定子回路串电阻起动,Y/△起动,自耦变压器起动和延边三角形起动;制动方式有三种,反接制动,能耗制动和电容制动,其中任何一种起、制动控制方式的实现通常由继电器-接触器控制系统来完成。下面就以定子回路串电阻降压起动和反接制动为例,分析由继电器-接触器实现的鼠笼式异步电动机的起、制动控制。
图1 继电器接触器控制系统
如图1所示,此控制电路含三个接触器和一个中间继电器线圈,12个触点。起动时,KM2、KM3线圈均处于断开状态,按下起动按钮SB1,KM1线圈通电并自锁,电动机串电阻减压起动。当电动机转速上升到某一定值时(此值为速度继电器KS1的整定值,可调节,如调至100r/min时动作),速度继电器KS1的常开触点闭和,中间继电器KA通电并自锁,KA的常开触点接通接触器线圈KM3,KM3的主触点在主电路中短接定子电阻R,电动机转速上升至给定值时投入稳定运行。
制动时,按下停机按钮SB2,KM1线圈断电,其主触点断开三相电源;控制电路中常开触点断开,KM3失电,限流电阻串入;常闭触点闭合,接通反接制动接触器KM2,对调两相电源相序,电动机处于反接制动状态。当转速下降至某一定值时(比如100r/min),KS1常开触点断开KA,继而断开KM2,电动机失电,迅速停机。
这种传统的继电器接触器控制方式控制逻辑清晰,采用机电合一的组合方式便于普通机类或电类技术人员维修,但由于使用的电气元件体积大、触点多、故障率大,运行的可靠性较低。随着PLC技术的发展,使用PLC进行电机的运行控制已成为必然趋势。
2、采用PLC实现鼠笼式异步电动器起、制动控制
可编程序控制器是在继电器控制和计算机控制的基础上开发的产品,自60年代末,美国研制和使用可编程控制器以后,****特别是日本和联邦德国也相继开发了各自的PLC(programmablelogiccontroller),与传统的继电器接触器控制系统相比较,笔者认为采用PLC实现鼠笼式异步电动机起制动控制是*明智的选择。下面就是笔者设计的采用PLC实现的鼠笼式异步电动机起制动控制电路的接线图、梯形图和指令程序,如图2和图3所示。
图2 PLC控制的输入输出接线图
图3 PLC控制的梯形图
PLC控制逻辑与传统的继电器接触器控制系统基本一致,其工作过程如下:
起动时,按下起动按钮SB1,X400常开触点闭合,Y430线圈接通并自锁,KM1线圈接通,主触头吸合,电动机串入限流电阻R开始起动,Y430的两对常开触点闭合,当电动机转速上升到某一定值时,KS1的常开触点闭合,X402常开触点闭合,M100线圈接通并自锁,M100的一对常开触点接通Y432的线圈,KM3线圈有电主触头吸合,短接起动电阻,电机转速上升至给定值时投入稳定运行。
制动时,按下停机按钮SB2,X401常开触点断开Y430线圈,使KM1失电释放,而Y430的常闭触点接通Y431线圈,制动用的接触器KM2线圈通电,对调两相电源的相序,电动机处于反接制动状态。Y430的常开触点断开Y432的线圈,KM3失电释放,串入电阻R限制制动电流。当电动机转速迅速下降至某一定值时,KS1常开触点断开,X402常开触点断开M100的线圈,M100的常开触点断开Y431线圈,KM2失电释放,电动机很快停下来。过载时,热继电器FR常开触点闭合,X403的两对常闭触点断开Y430和M110的线圈,从而使KM1或KM2失电释放,起到过载保护作用。
上述控制过程指令程序如下:
3、PLC与继电器接触器控制系统的比较
通过对鼠笼式异步电动机起制动的传统控制方法和PLC控制方法的比较,从某种意义上看,PLC控制是从继电器接触器控制发展而来的。两者既有相似性又有很多不同处。
3.1 二种方案的不同点
(1) PLC内部大部分采用“软”逻辑
继电器接触器控制全部用硬器件、硬触点和“硬”线连接,为全硬件控制;PLC内部大部分采用“软”电器、“软”接点和“软”线连接,为软件控制。
(2) PLC控制系统结构紧凑
继电器接触器控制系统使用电器多,体积大且故障率大;PLC控制系统结构紧凑,使用电器少,体积小。
(3) PLC内部全为“软接点”动作快
电器接触器控制全为机械式触点,动作慢,弧光放电严重;PLC内部全为“软接点”动作快。
(4) PLC控制功能改变极其方便
继电器接触器控制功能改变,需拆线接线乃至更换元器件,比较麻烦;PLC控制功能改变,一般只需修改程序便可,极其方便。
(5) PLC控制系统制造周期短
PLC控制系统由于结构简单紧凑,基本为软件控制,设计、施工与调试比继电器接触器控制系统周期短。
由于PLC技术是计算机控制的基础上发展而来,它的软硬件设置上有着传统的继电器接触器控制无法比拟的优势,工作可靠性极高。
3.2 PLC方案的设计要点
(1) 设置滤波
在PLC中一般都在输入输出接口处设置π形滤波器,它不仅可滤除来自外界的高频干扰,还可减少内部模块之间信号的相互干扰。
(2) 设有隔离
在PLC系统中CPU和各I/O回路(主要指数字口)几乎都设有光耦合器作隔离,以防止干扰或可能损坏CPU等。
(3) 设置屏蔽
屏蔽有两类:一类是对变压器采取磁场和电场的双重屏蔽,这时要用既导磁又导电的材料作为屏蔽层;另一类是对CPU和编程器等模块仅作电磁场的屏蔽,此时可用导电的金属材料作屏蔽层。
(4) 采用模块式结构
PLC通常采用积木式结构,这便于用户检修和更换模板,在各模板上都设有故障检测电路,并用相应的指示器标志它的状态,使用户能迅速确定故障的位置。
(5) 设有联锁功能
PLC中个各输出通道之间设有联锁功能。以防止各被控对象之间误动作可能造成的事故。
(6) 设置环境检测和诊断电路
这部分电路负责对PLC的运行环境(例如电网电压、工作温度、环境的湿度等)进行检测,也完成对PLC中各模块工作状态的监测。这部分电路往往是与软件相配合工作的,以实现故障自动诊断和预报。
(7) 设置Watchdog电路
PLC中的这种电路是专门监视PLC运行进程是否按预定的顺序进行,如果PLC中发生故障或用户程序区受损,则因CPU不能按预定顺序(预定时间间隔)工作而报警。
(8) PLC的输入、输出控制简单
PLC是以扫描方式进行工作的,即PLC对信号的输入、数据的处理和控制信号的输出,分别在一个扫描周期内的不间间隔里,以批处理方式进行,这不仅使用户编程简单、不易出错,也使PLC的工作不易受到外界干扰的影响;PLC所处理的数据比较稳定,从而减少了处理中的错误;PLC的输入、输出的控制较简单,不容易产生由于时序不合适而造成的问题。