6ES7517-3AP00-0AB0
动态制动器由动态制动电阻组成,在故障、急停、断电时通过能耗制动缩短的机械进给距离。
动态制动器由动态制动电阻组成,在故障,急停,电源断电时通过能耗制动缩短伺服电机的机械进给
一般都是在伺服电机的u v w相上引出三根线上面分别串上一个制动电阻,这三个电阻接到一个上,在伺服电机正常工作时这个继电器是吸合的三个相线不短接 当伺服电机要制动时 继电器就断电释放三个相线接到一起了就开始制动了。
再生制动是指伺服电机在减速或停车时将制动产生的能量通过逆变回路反馈到直流母线。经阻容回路吸收。
电磁制动是通过机械装置锁住电机的轴。
三者的区别:
(1)再生制动必须在伺服器正常工作时才起作用,在故障、急停、电源断电时等情况下无法制动电机。动态制动器和电磁制动工作时不需电源。
(2)再生制动的工作是系统自动进行,而动态制动器和电磁制动的工作需外部继电器控制。
(3)电磁制动一般在sv off后启动,否则可能造成放大器过载。动态制动器一般在svoff或主回路断电后启动,否则可能造成动态制动电阻过热。
选择配件的注意事项:
(1)有些系统如传送装置,升降装置等要求伺服电机能尽快停车。而在故障、急停、电源断电时伺服器没有再生制动无法对电机减速。系统的机械惯量又较大,这时需选用动态制动器动态制动器的选择要依据负载的轻重,电机的工作速度等。
(2)有些系统要维持机械装置的静止位置需电机提供较大的输出转矩且停止的时间较长,如果使用伺服的自锁功能往往会造成电机过热或放大器过载。这种情况就要选择带电磁制动的电机。
(3)三菱的伺服器都有内置的再生制动单元,但当再生制动较频繁时可能引起直流母线电压过高,这时需另配再生制动电阻。再生制动电阻是否需要另配,配多大的再生制动电阻可参照样本的使用说明。需要注意的是样本列表上的制动次数是电机在空载时的数据。实际选型中要先根据系统的负载惯量和样本上的电机惯量,算出惯量比。再以样本列表上的制动次数除以(惯量比+1)。这样得到的数据才是允许的制动次数。
如图所示,凸极转子采用永磁体,与定子磁场同步旋转,转子上带负载,以负载角δ状态旋转,t1与t2作用于转子上,转矩t的表达式为:
t=t1=t2=tm1sinδ=tm2sin2δ
如下图所示,合成转矩t收到磁阻转矩影响,使输出正弦的电磁转矩发生畸变,因本例所示为hb型混合式结构的,转子的n极与s极相差180°,此时t2的磁阻转矩可忽略不计。
1、何为和步进驱动器?
步进电机是一种与专门用于速度和位置**控制的特种电机,它旋转是以固定的角度(称为“步距角”)一步一步运行的,故称步进电机。其特点是没有累积误差,接收到控制器发来的每一个脉冲信号,在驱动器的推动下电机运转一个固定的角度,广泛应用于各种开环控制。
步进驱动器是一种能使步进电机运行的功率放大器,能把控制器发来的脉冲信号转化为步进电机的功率信号,电机的转速与脉冲频率成正比,控制脉冲频率可以**调速,控制脉冲数就可以**定位。
2、何为驱动器的细分?步进电机的转速与脉冲频率的关系是什么?
步进电机由于自身特有结构决定,出厂时都注明“电机固有步距角” (如 0.9°/1.8°,表示半步工作每走一步转过的角度为0.9°,整步时为 1.8°)。但在很多精密控制和场合,整步的角度太大,影响控制精度,振动太大,要求分很多步走完一个电机固有步距角,这就是所谓的细分驱动,能够实现此功能的装置称为细分驱动器。
v=p*θe÷360*m
v:电机转速(r/s) p:脉冲频率(hz) θe:电机固有步距角 m:细分数(整步为 1,半步为 2)
3、细分步进驱动器有何优点?
ø因减少每一步所走过的步距角,提高了步距均匀度,可以提高控制精度。
ø可以大大地减少电机振动,低频振荡是步进电机的固有特性,用细分是消除它的好方法。
ø可以有效地减少转矩脉动,提高输出转矩。
以上这些优点普遍被用户认可,并给他们带来实惠,建议选用细分驱动器。
4、为什么我的电机只朝一个方向运转?
ø可能方向信号太弱,或接线极性错,或信号电压太高烧坏方向限流电阻。
ø脉冲模式不匹配,信号是脉冲/方向,驱动器必须设置为此模式;若信号是 cw/ccw(双脉冲模式),驱动器则必须也是此模式,否则电机只朝一个方向运转。
伺服驱动器均采用数字信号处理器(dsp)作为控制核心,可以实现比较复杂的控制算法,实现数字化、网络化和智能化。功率器件普遍采用以智能功率模块(ipm)为核心设计的驱动电路,ipm内部集成了驱动电路,具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入了软启动电路,以减小启动过程对驱动器的冲击。
功率驱动单元通过三相全桥整流电路对输入的三相电或者市电进行整流,得到相应的直流电。经过整流好的三相电或市电,再通过三相正弦pwm电压型逆变器变频来驱动交流。功率驱动单元的整个过程可以简单的说就是ac-dc-ac的过程,整流单元(ac-dc)主要的拓扑电路是三相全桥不控整流电路。
一般伺服都有三种控制方式:位置控制方式、转矩控制方式、速度控制方式。
1、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值,由于位置模式可以对速度和位置都有很严格的控制,一般应用于定位装置。
2、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,可以通过即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。
应用主要在对材质的手里有严格要求的缠绕和放卷的装置中,例如绕线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。
3、速度模式:通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环pid控制时速度模式也可以进行定位,但必须把电机的位置信号或直接负载的位置信号给上位反馈以做运算用。位置模式也支持直接负载外环检测位置信号,此时的电机轴端的编码器只检测电机转速,位置信号就由直接的终负载端的检测装置来提供了,这样的优点在于可以减少中间传动过程中的误差,增加了整个系统的定位精度。
如果对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。
如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。
如果上位控制器有比较好的闭环控制功能,用速度控制效果会好一点,如果本身要求不是很高,或者基本没有实时性的要求,采用位置控制方式。