6ES7526-2BF00-0AB0安装调试
自由口模式下PLC与计算机的通信
PLC程序执行过程
----PLC在次扫描时执行初始化子程序,对端口及RCV指令进行初始化。初始化完成后,运行RCV指令使端口处于接受状态。
----RCV会将以“g”开头“G”结尾的指令保存到接收缓冲区,并产生接收完成中断。
----RCVcomplete中断服务程序用来处理接收完成中断事件,它会将接收缓冲区中的十六进制ASCII码还原成数据并保存,置位Verify子程序的触发条件(M0.1)。----Verify子程序复位本身的触发条件以防止子程序被重复调用,求出接收缓冲区中指令的BCC校验码并与指令中的BCC校验码进行比对。如果相等则置BCC码校验正确的标志位(M0.0)为1;如果指令格式正确(指令的结束标志在接收缓冲区中特定的位置VB133)而BCC码不相等,则发送代表BCC校验码错误的反馈信息;如果指令格式不正确(VB133中不是指令的结束标志),则返回代表指令格式错误的反馈信息。
----Read子程序的触发条件为:指令中的站地址与本机站地址相符、指令类型为读指令、BCC检验码正确。当条件满足时,Read子程序被执行。Read子程序禁止RCV,将指令所要读取的数据转换成十六进制ASCII码并写入发送缓冲区、计算BCC检验码、后发送反馈信息。
----Write子程序的触发条件为:指令中的站地址与本机站地址相符、指令类型为写指令、BCC检验码正确。当条件满足时,Write子程序被执行。Write子程序禁止RCV,将指令中的数据写入目标寄存器,后发送代表写入正确的反馈信息。
----PLC每接到一条指令后都会发送一条反馈信息,当反馈信息发送完成时,会产生发送完成中断,XMTcomplete中断服务程序用来处理发送完成中断事件。在XMTcomplete中断服务程序中所要执行的操作包括:复位BCC校验码正确的标志位(M0.0);允许RCV;bcc码寄存器清零;重新装入用于计算BCC校验码的地址指针;接收缓冲区中存放指令结束字符的字节VB133清零(用来判断下一条指令格式是否正确)。
PLC寄存器地址分配
----此程序占用PLC寄存器的VB100-VB199,内部继电器占用M0.0和M0.1。寄存器地址分配见表3、表4、表5、表6。
和利时LM系列PLC在无负压供水控制系统中的应用
4 无负压供水控制系统软件设计
根据工艺要求,无负压供水控制系统程序流程图如图2所示。
图2 无负压供水控制系统程序流程图
无负压供水控制系统操作界面由触摸屏HT6720T制作。操作界面主要可以完成无负压供水控制系统运行工况的监视、系统运行参数设置、实时报警显示、历史报警显示等功能。触摸屏工况界面如图3所示,可以查看各个水泵的运行状态以及进水压力、目标压力和出水压力等几个重要的输出参数。
图4和图5是参数设置界面,可以进行系统参数的设置。所设置的参数均为掉电保持。LM系列PLC中掉电保持区的数据为保持,可以避免因停电导致系统设定参数丢失的后顾之忧。图6为触摸屏报警查询画面,可以查询实时报警和历史报警信息。
图3 触摸屏工况界面
图4 触摸屏参数设置界面一
图5 触摸屏参数设置界面二
图6 触摸屏报警查询画面
过程控制和PLC设计指南
PLC基本原理
电流控制环的应用始于20世纪早期的电传打字机,先使用的是0–60mA环路,后来改为0–20mA环路,PLC系统率先加入4–20mA环路。4–20mA电流环有很多优势,将4mA作为低通信电流,传输线断开(开路)时很容易检测到这一故障,只需两条连线即可实现远端传感器供电,大约3.5mA。4–20mA环路可以采用模拟通信,也可以采用数字通信。
在传统的分立器件设计中需要仔细计算,电路占用较大空间。Maxim推出了几款20mA器件,能够大大简化系统设计。我们考虑典型的PLC功能,如图3所示。
图3. PLC简化框图
PLC用于完成某项工作或任务。我们先检测一个物理参数,对其处理并进行决策,命令某个物理设备进行动作。根据这一模型,左下框显示了信号调理输出,可以采用MAX15500/MAX15501集成电路。
MAX15500/MAX15501允许选择近程电压控制或远程电流控制。从图4可以看出,除了传统的分立方案中所具备的基本通信功能外,器件中又加入了新的监测和保护功能。
图4.MAX15500/MAX15501输出调理器系列产品,器件功能包括:为1kΩ提供的±12V加载感应输出、供给750Ω的±24mA电流、100μs的14位建立时间、40μs的12位建立时间。
工厂布线受运动、震动等因素的影响,可能导致与其它连接器之间的开路或短路。为了保证设备和人身安全,需要进行安全监测。电缆发生失效时,在系统彻底失效之前会有一段间隔时间。MAX15500系列能够智能化地进行监测,管理不同的失效状况。
考虑到工厂极端的EMI、RFI、电源浪涌条件,任何监控措施都必须可靠,能够不受外界环境的干扰。MAX15500系列包含了一个小260ms的开路、短路超时周期,这个时间周期足以避免监测嘈杂环境引起的错误报警,也足够捕获短暂的电缆故障。器件将锁存故障并触发一个独立的硬件中断引脚报警,从而使处理器快速响应电缆短路故障。处理器收到中断后可以读取MAX15500的寄存器内容,获取准确的故障信息,清除故障中断。除了监测电缆的状况外,器件还提供其它安全功能,例如,通过检测芯片温度监控环境是否过热。可调节的电源跌落检测门限对于可靠的系统设计非常关键,电源电压检测门限可以在±10V至±24V范围调节,级差为2V。
为了保证系统安全,MAX15500/MAX15501输出还具有过流保护、对地短路保护以及高达±35V的过压保护。为满足客户需求,MAX15500/MAX15501提供可编程的超量程能力。某些用户采用满量程的105%,甚至120%进行测试或处理紧急操作(系统可能出于部分故障或强噪声环境)。MAX15500/MAX15501采用32引脚、5mm2TQFN封装,带有裸焊盘,改善散热。
MAX15500/MAX15501输出调理器符合HART®标准,HART(高速可寻址远端传感器)协议能够在4–20mA控制线路上承载双向数字信号,类似于1200波特率、用于固定电话呼叫的Bell202协议。
MAX15500/MAX15501还具有独立的SPI™总线,减少了电气隔离所需要的光隔离器。器件采用的是特殊的自定时SPI接口,支持菊链协议。当多个SPI器件需要通过电气隔离控制时,这种模式有助于减少控制线和隔离光耦的需求。
在更小的PCB (PC板)上集成更多功能
设计分立、可选电压(单极性和双极性)或电流输出调节电路是一项极具挑战的任务,特别是当设计人员了解到需要控制满量程可变增益、针对单极性和双极性电压设置的多种复位电平、0mA和4mA电路需求时,会对系统的复杂度又的认识。图5简化了这些功能设计,因为这些功能已经集成在MAX5661电流和电压输出DAC的内部。
图5. MAX5661的简化功能框图
MAX5661借助其编程功能解决了分立方案设计难题,可以方便地选择以下参数:
输出电压
单极性范围:0至+10.24V,±25%
双极性范围:±10.24V,±25%
电流输出
单极性低档范围:0至20.45mA
单极性范围:3.97mA至20.45mA
满量程输出增益
以10位分辨率或间隔调整到高达±25%的超范围
异步复位或清零,或预置到16位数字
这些功能提供了设计灵活性,作为模拟电源时,输出电压范围为±13.48V至±15.75V;电流输出时,输出电压摆幅为:+13.48V至+40V。差分电压输出可以通过电压输出放大器的加载/感应检测实现远程检测。故障输出中断指示开路电流输出、短路电压输出或状态清除。该功能由限流电压输出驱动;对于电流输出,压差检测器对超出规定范围的电流输出进行监测。/LDAC引脚用于控制异步DAC更新和多DAC同步系统。