6ES7322-1CF00-0AA0技术参数
S7-200CPU22X 系列的每种主机所提供的本机I/O点的I/O地址是固定的,进行扩展时,可以在CPU右边连接多个扩展模块。如图所示,每个扩展模块的组态地址编号取决于各模块的类型和该模块在I/O链中所处的位置。输入与输出模块的地址不会冲突,模拟量控制模块地址也不会影响数字量。
编址方法是同样类型输入或输出点的模块在链中按所处的位置而递增,这种递增是按字节进行的,如果CPU或模块在为物理I/0点分配地址时未用完一个字节,那些未用的位也不能分配给I/O链中的后续模块。
例如,某一控制系统选用CPU224,系统所需的输入/输出点数为:数字量输入24点、数字量输出20点、模拟量输入6点和模拟量输出2点。
本系统可有多种不同模块的选取组合,并且各模块在I/O链中的位置排列方式也可能有多种,图2所示为其中的一种模块连接形式。表1所示为其对应的各模块的编址情况。
表1 各模块的编址
主机 | 模块 1 | 模块 2 I/O | 模块 3 | 模块 4 | 模块 5 |
I0.0 Q0.0 | I2.0
| Q2.0
| AIW0 AQW0
| I3.0 Q3.0
| AIW8 AQW4 AIW10
|
● 同类型输入或输出的模块按顺序进行编制。
● 数字量模块总是保留以8位(1个字节)递增的过程映象寄存器空间。如果模块没有给保留字节中每一位提供相应的物理点,那些未用位不能分配给I/O链中的后续模块。对于输入模块,这些保留字节中未使用的位会在每个输入刷新周期中被清零。
● 模拟量I/O点总是以两点递增的方式来分配空间。如果模块没有给每个点分配相应的物理点,则这些I/O点会消失并且不能够分配给I/O链中的后续模块。
S7-200 SMART CPU模块本体直接提供三轴100KHz 高速脉冲输出,通过强大灵活的设置向导可组态为PWM
输出或运动控制输出,为步进电机或伺服电机的速度和位置控制提供了统一的解决方案,满足小型机械设备的
定位需求。
S7-200 SMART CPU提供了三种开环运动控制方法:
? 脉冲串输出 (PTO):内置在 CPU 的速度和位置控制。此功能
仅提供脉冲串输出,方向和限值控制必须通过应用程序使用
PLC中集成的或由扩展模块提供的 I/O 来提供。请参见脉冲
输出PLS指令。
? 脉宽调制 (PWM):内置在CPU 的速度、位置或负载循环控制。
若组态 PWM 输出,CPU将固定输出的周期时间,通过程序
控制脉冲的持续时间或负载周期。可通过脉冲持续时间的变
化来控制应用的转速或位置。请参见脉冲输出PLS指令。
? 运动轴:内置于CPU中,用于速度和位置控制。 此功能提
供了带有集成方向控制和禁用输出的单脉冲串输出,还包括
可编程输入,并提供包括自动参考点搜索等多种操作模式。
PWM和运动控制向导设置
为了简化您应用程序中位控功能的使用,STEP 7-Micro/WIN
SMART提供的位控向导可以帮助您在几分钟内全部完成PWM、
PTO的组态。该向导可以生成位控指令,您可以用这些指令在您
的应用程序中对速度和位置进行动态控制。
PWM向导设置根据用户选择的PWM 脉冲个数,生成相应的
PWMx_RUN子程序框架用于编辑。
运动控制向导多提供3轴脉冲输出的设置,脉冲输出速度从
20 Hz 到100 kHz可调。
西门子S120电机驱动模块6SL3120-1TE21-8AA4
PLC没有断电延时型定时器,只有通电延时型定时器。本梯形图的工作原理:当外接启动按钮SB2按下,驱动梯级X000的常开接点闭合,通过串接其后的X001、T1、T0、Y002的常闭接点,接通输出继电器,由于Y000线圈的闭合,促使梯级支路中的并联常开触点闭合形成Y000线圈自保,至使Y000驱动的接触器KM3闭合将电动机绕组接成星形。在这第二梯级中的左母线一侧的常开触点Y000闭合,通过串接其后的X001、Y003的常闭接点接通了输出继电器Y001和另一支路经Y002常闭接点相串的定时器线圈T0(K值为40)。由于Y001线圈的闭合使与本支路相并的母线一侧Y001闭合形成了Y001线圈自保。由于Y001线圈的闭合,接于Y001后的外部接触器KM1闭合,电动机处于星接启动状态。在Y001闭合的定时器T0也已开始计时,4S后定时器T0常闭接点,在梯级中切断了输出继电器Y000线圈,解除了星接。而在这第三梯级中左母线一侧的T0常开接点闭合,通过串接其后的X001、Y000的常闭接点,接通了输出继电器Y002。由于Y002的接通,并接于左母线一侧的Y002闭合,使Y002线圈形成自保。Y002线圈后所接的接触器KM2接通,完成了星角转换,使电动机进入了角接状态。梯级中与第三梯级中所串接的Y002和Y001常闭接点实质是星与角的互锁。停止按外接停止按钮SB1,从梯形图中可以看出由SB1驱动的梯级、第二梯级和第三梯级均串接了X001的常闭触点,其目的是让电动机在任一运行状态,均能可靠停止。而在第四梯级X001接的是常开触点,其一旦闭合,通过串接其后的定时器常闭接点,接通了输出继电器Y003线圈和定时器T1线圈,由于Y003线圈的闭合,其并接于梯级第二支路中的Y003常开接点接通了Y000线圈,驱动KM3闭合,使电动机的处于星接状态,以提供直流通道。在线圈Y003闭合后,驱动了外接接触器KM4在电动机停止交流供电的情况下向电动机提供直流电进行能耗制动。定时器线圈T1是与线圈Y003获电,并开始计时,计时时间一到,串接于梯级与第四梯级的常闭接点断开,使电动机完成了停车与制动的过程。外部接触器接线时,应考虑接触器间的互相联锁以防短路。另本梯形图没设置热保护。
⑥ 双速异步电动机控制电路改用PLC控制
该线路控制的是一台双速电动机,一般的人对它不是很理解。电动机型号为YD123M-4/2,6.5/8KW,△/Y。根据型号解读;该电机具有二种速度即4极和2极,在4极速度下,电动机的功率为6.5KW,绕组为三角形接法。如果在2极的速度下,电动机的功率为8KW,绕组为双星接法。该电动机共有6接线头,三角形接时(低速)电源由U1、V1、W1接入,其余接头U2、V2、W2为悬空。星接时(高速)将接线头U1、V1、W1接成星点形成了双星点,三相电源则由U2、V2、W2输入(电动机接线图详上图所示)。该线路要求;电机可以在低速、高速状态下择其一运行。而在高速运行时则按低速启动再转为高速运行。自己可根据电原理图进行分析。
梯形图工作原理:按设于外部的启动按钮SB3,接通了梯级母线侧常开接点X000,电流(能流)通过串接其后的X002、Y001的常闭接点接通了输出继电器线圈,接通与M0常闭接点相串的定时器线圈T0(K值为40)。由于Y000线圈的闭合,使其并接母线一侧的Y000常闭接点闭合,Y000线圈形成了自保。由于Y000线圈的闭合,使接于其后的外部接触器KM1动作,电动机处于低速启动状态(即处于三角接法)。Y000线圈闭合的定时器T0即开始计时。计时时间一到,接于第三梯级母线一侧的T0常开接点闭合,通过串接其后的X002常闭接点,接通输出继电器Y001线圈闭合。由于Y001线圈的闭合,并接于母线一侧的Y001常开接点闭合,Y001线圈形成了自保。在这(Y001线圈的闭合)串接于梯级的常闭接点断开,切断了由Y000线圈所控制的KM1接触器的运行。在Y001线圈的闭合的第四梯级的母线侧Y001常开接点闭合,通过串接其后的常闭接点X002,接通了输出继电器Y002。在输出继电器Y001闭合时,接于其后的外部接触器KM2闭合。KM2将电机绕组头U1、V1、W1接成了星点,而输出继电器Y002外部所接的接触器KM3则接通了电源使电动机处于高速运行状态。停止,则按外接按钮SB1,各梯级所串接的X002常闭接点断开,使电动机在任一运行状态均可停止。这是低速启动,高速运行的过程。
低速运行时,按外接启动按钮SB1,此时第二梯级接于母线一侧的X001闭合,电流(能流)则通过串接于其后的X002接通中间继电器M0线圈,使并接于母线一侧的M0常开接点闭合,使M0中间继电器线圈形成了自保。由于M0线圈的闭合,使梯级第二支路母线一侧的M0常闭接点闭合,切断了定时器线圈T0的运行,使电流接通了Y000输出继电器,外接的接触器KM1接通使电动机处于三角形低速运行状态。停止,则按外接按钮SB1即可。这就是低速运行过程。注意:本梯形图未设置热保护,从原图来看热保就少用了一个。可在梯形图梯级Y001常闭接点后串接X003,在第四梯级X002常闭接点后串接X004。
⑦ 用PLC控制设计一梯形图
要求:有三台电动机,分别标为1号、2号、3号电机。第1号机启动后过4S,第2号电机自动启动,第3号机又在第2号机启动后过4S自动启动。停止时,第3号电机先停,过4S后第2号电机自动停止,第2号电机停后再过4S,第1号电机跟着停。
思路是这样的:根据题意,设输入信号按钮2个,分别为SB1和SB2。SB1作为停止按钮,用以控制梯形图中第四梯级中母线侧常开触点X001。SB2作为启动按钮,用以控制梯形图中梯级母线侧常开触点X000。因有三台电机则设输出继电器3个,分别为Y000、Y001、Y002。Y000后接接触器KM1,Y001后接接触器KM2,Y002后接接触器KM3。分别控制1号、2号、3号电机。启动时1号电机用按钮控制,而2号、3号电机是根据时间原则启动的,故应设置2个定时器,分别为T0、T1。停止时,第3号电机可以使用按钮控制,而2号、1号电机也是根据时间原则停止的,故也应设置2个定时器,分别为T2、T3。这些器件确定后,用铅笔在纸上钩出,再围绕这些软器件进行合理组合、优化即可,若有必要增加其它软器件。
工作原理:按外接按钮SB2,驱动了接于梯级母线一侧常开接点X000,能流经串接于后的T3常闭接点,接通了输出继电器Y000线圈及与其并接的经与常闭接点M0串接的定时器线圈T0。由于Y000线圈的接通,并接于母线一侧的Y000常开接点闭合,Y000线圈形成了自保(在这第四梯级的Y000常开接点闭合,为停止做好了准备),1号电动机启动。与Y000线圈闭合的定时器则开始计时。计时时间一到,接于第二梯级母线一侧的常开接点T0闭合,能流经串接于后的T2常闭接点接通了输出继电器Y001线圈及与其并接的经与常闭接点M0串接的定时器线圈T1。并接于母线一侧的Y001常开接点闭合,Y001线圈形成了自保,2号电动机启动。与Y001线圈闭合的定时器则开始计时。计时时间一到,接于第三梯级母线一侧的常开接点T1闭合,能流经串接于后的X001常闭接点接通了输出继电器Y002线圈。由于Y002线圈的接通,并接于母线一侧的Y002常开接点闭合,Y002线圈形成了自保,3号电动机启动。停止则按外接按钮SB1,驱动了第三梯级常闭接点的断开,3号电机停运行。而在这第四梯级母线一侧常开接点X001的闭合。能流经串接于后的常开接点(此时由于Y000线圈的闭合,其已经变为闭合)接通了中间继电器M0线圈,由于M0线圈的接通,并接于母线一侧的常开接点M0闭合,M0线圈形成了自保。在M0线圈闭合的并接的定时器T2、T3闭合。并开始计时,因T2计时时间为4S,时间一到,串接于第二梯级的定时器T2常闭接点断开,2号电机停止。再4S后,串接于梯级的定时器T3常闭接点断开,1号电机停止。由于Y000线圈断电,串接于第四梯级的Y000常开接点断开,梯形图停止了运行。图中在梯级和第二梯级中,串接于定时器T0、T1前的M0常闭接点的作用是防止停止后电机启动而设
plc除了用于开关量控制、定时、计数的基本指令外,还有大量的应用指令,有的plc的应用指令多达数百条。
对于应用指令,初学者非常困惑,不知道哪些指令重要、哪些指令常用,应该怎样学习它们。这些指令可以分为下面几种类型:
1.属于几乎所有计算机语言都有的指令,例如数据的传送、比较、移位、循环、数学运算、字逻辑运算、数据类型转换等指令。
这类指令非常重要,它们与计算机的基础知识(例如数制、数据类型、寻址方式等)有关,应通过例子和实验了解这些指令的基本功能。学好一种型号的plc的这类指令,再学别的plc的同类指令就很容易了。
2.与顺序控制程序有关的指令。这类指令中,fx的stl指令设计得好,用stl指令设计的梯形图与顺序功能图之间有明确的对应关系,易于理解和使用,设计的程序比其他方法设计的短,可以节约大量的设计时间。
s7-200的scr(顺序控制继电器)指令和欧姆龙的步指令(step/snxt)也用于编写顺序控制程序。
建议在学习这类指令之前,学习顺序功能图(见作者编写的plc教材)。
3.与plc的应用有关的指令,例如与pid控制、运动控制、高速输入/高速输出、通信有关的指令,这些指令也很重要。某些指令需要学习有关的专门知识,才能正确的理解和使用它们。
4.与plc特定的硬件、软件有关的指令,例如读写特殊模块和模拟电位器的指令,s7-300/400读取数据块长度和编号的指令等。
5.与某些特定的工程应用有关的指令。例如fx的凸轮顺控指令和旋转工作台控制指令。
学习应用指令时,可以按指令的分类浏览所学的plc有哪些应用指令,它们用来干什么,便于在需要的时候能找到手册或帮助中的指令说明。初学时没有必要花大量的时间去了解应用指令的详细使用方法,更没有必要去死记硬背它们。重点是了解指令的基本功能。
可以采用需要什么学什么的方法,重点学习读程序、编程序时遇到的和需要使用的指令,没有用到的指令暂时不管它。在阅读或编写程序时如果遇到不常用的指令,可以通过编程手册了解它们的详细使用方法。
如果编程软件有指令的在线帮助,选中指令列表或程序中的某条指令,按一下f1键,就可以看到该指令的大量细节,例如指令各参数的数据类型、可用的存储区、参数的意义,指令的功能和应用实例、指令的执行对状态字或有关标志位的影响等。
与学外语不能只靠背单词,应主要通过阅读和会话来学习一样,要学好plc的应用指令,也离不开实践。一定要在读程序和编程序的过程中学习应用指令。
有的指令实际上极少使用,它们属于“休眠”的指令,学习的时候可以不管它们。万一在读程序时遇到它们,可以通过指令的在线帮助或查手册来了解它们。