6ES7235-0KD22-0XA8详细使用
S7-200的仿真软件不是西门子公司编写的,国内有人将它汉化,其V2.0版可以对S7-200编程软件V4.0编写的程序仿真。该仿真软件不能对S7-200的全部指令和全部功能仿真。它仍然不失为一个很好的学习S7-200的工具软件。
该软件不需要安装,执行其中的“S7-200仿真.EXE”文件,就可以打开它。点击屏幕中间出现的画面,输入密码6596后按回车键,开始仿真。
软件自动打开的是老型号的CPU214,应执行菜单命令“配置”→“CPU型号”,用打开的对话框设置CPU的型号为CPU 22x。
下图左边是CPU224,CPU模块下面是用于输入数字量信号的小开关板。开关板下面的直线电位器用来设置SMB28和SMB29的值。
双击CPU模块右边空的方框,用出现的对话框添加扩展模块。
仿真软件不能直接接收S7-200的程序代码,必须用编程软件的“导出”功能将S7-200的用户程序转换为扩展名为“awl”的ASCII文本文件,再下载到仿真PLC中去。
在编程软件中打开主程序OB1,执行菜单命令“文件”→“导出”,导出ASCII文本文件。
在仿真软件中执行菜单命令“文件”→“装载程序”,在出现的对话框中选择下载什么块,点击“确定”按钮后,在出现的“打开”对话框中双击要下载的*.awl文件,开始下载。下载成功后,CPU模块上出现下载的ASCII文件的名称,会出现下载的程序代码文本框和梯形图(见下图)。
执行菜单命令“PLC”→“运行”,开始执行用户程序。如果用户程序中有仿真软件不支持的指令或功能,执行菜单命令“PLC”→“运行”后,出现的对话框显示出仿真软件不能识别的指令。点击“确定”按钮,不能切换到RUN模式,CPU模块左侧的“RUN”LED的状态不会变化。
可以用鼠标点击CPU模块下面的开关板上的小开关来模拟输入信号,通过模块上的LED观察PLC输出点的状态变化,来检查程序执行的结果是否正确。
在RUN模式点击工具栏上的 按钮,可以用程序状态功能监视梯形图中触点和线圈的状态。
执行菜单命令“查看”→“内存监控”,可以用出现的对话框监控V、M、T、C等内部变量的值。
为了扩展数控系统逻辑功能的可编程能力,通常在数控系统中配置PLC功能。并采用独立PLC或内置式PLC两种方式。但目前内置式PLC一般使用软件实现。有一套特有的编程与配置方法,这对使用者熟悉新功能提出了额外的要求。现场可编程逻辑器件FPGA具有很强的在线逻辑编程能力。常被应用于实现某些逻辑控制中。比如交通信号灯控制:近来也有用FPGA实现PLC的尝试。即将与需要实现的控制功能对应的梯形图直接做成FPGA硬连线逻辑。但这些应用都没有脱离FPGA本身的现场可编程特性。用户如需修改控制逻辑。就需要掌握VHDL语言及FPGA的EDA设计方法。否则不能提供更加友好、通用的PLC编程界面。
本文介绍了一种新的数控系统中内置式PLC的FPGA实现方法。它能较好地解决上述技术难题,也便于实际应用。
1 基于ARM和FPGA的数控系统
机床数控系统由控制系统、伺服驱动系统和伺服电机组成。控制系统生成的坐标轴运动指令,被发送到伺服驱动系统。由伺服驱动系统形成伺服电机的运转控制令。从而使伺服电机完成相应的动作。
图1是基于ARM+FPGA的数控系统的FPGA部分结构框图,下载接口、配置器件及FPGA3个部分组成了FPGA自身的开发调试环境。可以方便地与PC组成开发调试平台。机床控制单元MCU使用32位的ARM嵌入式处理器。运行uC/0S实时操作系统,实现控制系统的大量分析和计算工作。比如G代码解析,根据加工要求形成坐标轴的运动指令以及数控系统的人机界面等。FPGA除了完成对运动指令进行细插补之外。还实现了数控系统键盘电路的扫描模块、编码计数器模块和驱动器控制模块的功能。本文要介绍的数控系统内置式PLC也是在FPGA内部实现的。
图1 数控系统中的FPGA结构框图
2 用FPGA实现PLC的软硬件架构
为了有更好的人机界面。更符合工程习惯。采用与主流商业PLC兼容的编程语言进行编程。内置式PLC可以接受终用户输入的PLC指令表(一个特定的子集)。并终实现相应的逻辑控制功能。FPGA内部是硬件逻辑。显然无法识别PLC指令,为了实现这种构想。必须设计一套指令集。该指令集定义了FPGA可以执行的小操作的集合。根据指令集来设计编译器和FPGA内部的PLC逻辑。其软硬件架构如图2所示。PLC指令被编译后,生成FPGA可执行的指令代码。将指令代码下载到FPGA内部,由执行逻辑对代码进行逐条执行。终实现PLC的逻辑控制功能。
图2基于FPGA的PLC软硬件架构
PLC核心逻辑是一个状态机。可以根据不同的输入指令执行不同的操作。在设计中。应确定需要执行的指令集合,即状态机的指令集设计。根据指令集来设计编译器和PLC逻辑功能。PLC指令编译器源程序使用C语言编写。这样。此编译器可以方便地移植到PC、ARM或别的任何支持C编程的平台上。基于图2中的软硬件架构的PLC不能独立运行。需要MCU对其进行相应的设置和辅助。如图3所示。在MCU端。需要一个专门处理与PLC接口的任务(对于多任务操作系统)或程序。
图3 PLC逻辑的工作过程
在MCU端,可以提供相应的PLC人机界面,提供PLC梯形图或指令表的编辑、编译甚至排错界面,当编译完成后。生成可供FPGA内部的PLC逻辑执行的“PLC中间操作码”。当要执行PLC功能时,MCU配置FPGA处于“代码下载状态”。并由MCU将编译后的代码下载到FPGA的RAM中:下载完成后。MCU将FPGA设置为“PLC运行状态”。开始依次读入输入和输出端口的状态。并根据所要执行的指令更新状态。后输出刷新状态。FPGA还有一个“监控状态”。此时。ARM处理器可以直接设置PLC的输入输出10寄存器的值。并可以单步运行PLC中间操作码。ARM结合返回信息。并配合相应的界面,即实现了对PLC的调试。
3 PLC逻辑的EDA设计方法
新型FPGA器件及新的EDA设计软件和工具是这种数控系统内置式PLC实现方式的前提。没有EDA设计流程和方法的支撑。是很难完成相应设计工作的。
图4是典型的EDA设计流程。主要包括设计输入、功能仿真、综合与优化、映射和布局布线以及后的下载验证等环节。EDA设计流程中。重要的环节便是仿真。因为所设计的对象在FPGA内部很难在硬件上进行测试。必须利用诸如Active—HDL。ModelSim等仿真工具进行功能仿真、综合后仿真以及布局布线后仿真。设计过程和仿真过程是交叉同步进行的。好设计一个模块。即对一个模块的功能进行仿真,确保其正确后,才可以集成到更高层面的设计中去。仿真的主要任务就是检验HDL是否能满足设计所提的要求。检验的方式是编写测试平台。在测试平台上给模块输入条件。观察或检验其输出。从而验证是否满足设计要求。Active—HDL的GenerateTestBench功能还可以生成测试向量的模板。大大加速了设计过程。
图4 EDA设计流程
图5 PLC原型机逻辑仿真结果
掌握并正确使用EDA设计方法。是使用FPGA进行逻辑设计成功的关键。
4 在数控系统中的实现与分析
基于FPGA的PLC实现方法在我们自主研发的基于ARM+FPGA的数控系统中得到了应用。形成了PLC原型机,实现了基本的PLC逻辑控制功能。能够与数控系统集成在一起。结合相应的控制界面。可以对机床的各逻辑开关量进行PLC编程控制。更重要的是。这种框架下的PLC具有开放式结构。可根据需要不断完善。实现更复杂的功能。如图5所示,PLC有2个主要状态。即输入输出刷新(pcstatus=0)和运行状态(pc status=1)。在pc status=0时,输入被采样,输出映像被置位:当pcstatus=1时,PLC开始运行,pcpointer为PLC内部指令的指针,在每个时钟周期,PLC执行一条指令,并将指令指针后移,当执行完所有指令后,outputfresh置高,允许输出映像寄存器的结果输出到端口plc ioout中去。以上过程反复进行,便实现了PLC的基本逻辑功能。
针对数控系统中各种内置式PLC的实现方式。基于FPGA的解决方案在以下一些方面做了特别的处理:
(1)复位问题。当FPGA一上电时,其内部的PLC逻辑即令其自身进入了一个自复位状态。此时如果没有外部MCU给予正确的操作指令。FPGA将不会进入其他任何状态。从而确保PLC不会产生任何的误动作。
(2)响应时间。PLC程序会得到周而复始的执行,当输入状态(inimage)改变时,输出状态会在下一个允许输出信号有效时(outputfresh=1)得到更新。PLC的大响应周期取决于所执行的指令条数。对于绝大多数指令而言。PLC可在每个时钟周期执行一条语句。在后一条语句执行完成后的下一个时钟上升沿输出得到刷新,在此刷新时钟周期内。PLC进行循环复位的初始化工作。差的情况时。输入信号在上次采集刚刚结束后发生变化。需要在下一次采样并执行完成后才能反映到输出上。即响应时间为Tresponse=(PLC指令条数+1)×2×时钟周期,本文使用的时钟周期为50ns,有:Tresponse=(PLC指令条数+1)×2×50ns:受FPGA内部的EAB(bbbbbdedArrav B10ck。一种专门用来综合成RAM的内部资源)数量的限制。只能综合出约2k bvteRAM(除非设置必要的控制寄存器)。当执行约有2 000条PLC指令时。大响应时间为0。2ms量级。
对于一般以软件方式实现的PLC。多使用一个特定的任务来实现PLC逻辑控制功能。在嵌入式操作系统中。任务的上下文切换时间一般在斗s量级;随着系统中其他任务的就绪。PLC任务将面临被暂时挂起。在这种情形下。其响应时间将变长。当然。如果使用高频率运行下的嵌入式处理器(60MHz以上),在指令条数较多时,其响应时间也可接受。但数控系统中的PLC功能一般都只实现对机床的简单逻辑控制。控制环境比较简单。指令条数有限。使用FPGA方式实现还是有其特有的优势的。
(3)PLC运行阶段的可靠性。PLC是将编译后的可执行指令放到FPGA内部的RAM中运行。只要完成必要的配置。PLC便完全独立运行,不再需要外部MCU的干预。换言之,此时。MCU死机或程序跑飞,也不会影响正在执行中的PLC功能。使用FPGA来实现PLC功能。对于提高数控系统的整体可靠性是有优势的。
(4)PLC指令长度的支持。由于FPGA内部的EAB资源有限,能够容纳的PLC指令长度有限。每次PLC运行前都必须由MCU将代码下载到FPGA中。才可控制PLC开始运行。即FPGA不能独自实现PLC功能。为了解决这一问题,可考虑为FPGA专门配置非易失性的存储器。比如Flash。这样不但可以扩大PLC指令长度。还可实现上电自动运行PLC程序。甚至不需要MCU的辅助和干预,但这将需=要诸如编程器之类的部件的支持。