西门子6ES7222-1BF22-0XA8详细使用
引言
MOCVD(bbbbl Organic Chemical Vapor Debbbbbbbb)(金属有机化合物化学气相沉积)是一项制备高质量半导体晶体的新技术。此技术的优点在于[1]:可制成各种薄膜结构型的材料;可制成大面积、高均匀性的外延膜;可**控制膜的厚度、组成及掺杂浓度;灵活的气体源路控制技术、气体源路的快速切换技术、生长过程全自动控制,使得人的随机因素影响减至小且重复性很好。要使MOCVD的这些特点能够顺利实现,就必须对工艺参数严格控制。而MOCVD的工艺参数特别多且复杂,这就对控制方法提出了越来越高的要求。有必要采取计算机自动控制。目前MOCVD控制系统大部分依靠国外进口,成本高。研制出具有自主知识产权的MOCVD设备将是发展我国光电子产业的关键环节,意义重大,特别是随着“国家半导体照明工程”的启动,MOCVD的国产化已变得非常紧迫。
根据MOCVD控制系统的具体工艺要求,我们自主研发设计了基于PLC的MOCVD控制系统,该系统采用上位机和可编程控制器实现整个系统的控制和管理,现场试验运行表明该系统性能稳定,响应快速。
2 系统的组成及实现原理
本系统主要由计算机、Siemens PLC S7-300(控制单元的核心),温度控制系统、气体处理系统、反应室等组成。控制系统的基本结构见图1所示。
2.1上位机
选用工业控制计算机作为上位机,利用WINCC 工控组态软件通过MPI 和PLC 进行通讯,从PLC 得到信息,向PLC 传送命令,其负责对系统的监控、数据记录、报警记录、数据分析,参数配置。
2.2 PLC
选用PLC 作控制器,是因为其具有可靠性高、抗干扰能力强、硬件配套齐全、维护方便、适合于恶劣的工业应用环境等特点。PLC作为系统的核心控制器,负责整个系统运行,包括各种信号的采集、数据的处理以及各种输出信号的控制。输入信号采集包括各类仪表传感器的**、压力、报警信号等。输出信号涉及电磁阀、接触器、电动机、压力控制器、**控制器、RF感应加热器等控制量。
2.3 温度控制系统
温控器、感应加热器、上位机、PLC组成了系统的温度控制系统。这里的温控系统是一个闭环控制系统,温控器通过热电偶实时地采集反应室的温度,由RS232串口反馈给上位机,经过上位机的控制算法处理后,计算出合适的控制量,传送给PLC,由PLC运行程序控制感应加热器来控制反应室的温度。
2.4 气体处理系统
气体处理系统其硬件主要有经过化学抛光的不锈钢管道、气体纯化器、**控制器、压力控制器、电磁阀和气动阀等组成。气体控制系统的主要作用是通过控制压力和**控制器,调节气路上各种阀门的开度,从而达到控制各种气源配比的目的,并通过管道向反应室输送反应剂,为保证反应剂的纯度,要求管道的密封性要很好。
气路上压力与**的控制均由压力和**控制器来完成。传感器将采集来的实际测量值传送给控制系统,控制系统将采集的实际值,实时与设定值比较。如果用户对控制效果不满意,可以采用闭环回路控制,实时修改传送的设定值。
3 系统软件设计
系统的控制主要指通过PLC对信号进行自动和手动的控制,从而实现对加热系统、气体**和气体压力、气动阀等的控制。我们设计的MOCVD控制系统有自动控制程序和手动控制程序两种控制方式,自动和手动可以互相切换控制。其子程序主要包括步序控制,模拟量输出控制,模拟量输入控制,数字量输出控制,数字量输入控制。
3.1 步序控制
在MOCVD控制系统中,根据不同的配方,所控制的步运行时间不同,所要求的循环位置都不同。本系统设计方案的一个设计难点,就是在编写程序的时候,无法预先确知循环体的开始及停止位置,如何编写一个可以供多种不同配方使用的程序。
针对MOCVD 系统工艺的要求,结合本系统运行流程,采用顺序控制设计法来控制不同步之间的动作和命令,执行不同步序循环控制策略。该方法灵活、准确地采用一个循环控制程序,根据不同配方,在不同循环位置,实现不同功能。其基本的思想是将系统的工作周期划分为50 个顺序相连的阶段,这些阶段称为步(Step),用编程元件(存储器位M)来代表各步,每步设定运行开始标志位和结束标志位,进入循环标志位和循环结束标志位,步之间的转换条件可以是外部中断输入“前跳”信号,或者是每步运行的定时器提供的信号。
对于处理不确定的循环位置问题,在每步结束时,判断该步循环结束标志位是否为1,如果不为1,则直接跳到下一步运行,如果为1 再读取剩余循环次数是否为0,如果为0 则跳到下一步运行,如果不为0 则剩余循环次数减1,跳到进入循环的步序运行。其算法流程如图2 所示。
3.2 模拟量输出控制
模拟量输出,主要包括8路压力、20路**以及温度。在模拟量输出中,防止冲击是一项很重要的指标。为了防止冲击,输出时采用爬行渐增的输出控制策略,使模拟量的输出在额定时间内,准时渐增到所需要的输出值,每一次所递增的量要尽量的小,以降低冲击的可能性,保证生长的进行。
基本思想:每步运行开始时,读取步序号并调用该步的模拟量的目标设定值(IN2),前级步结束的输出值(IN1)及要爬升的步数(D),求出步进量S=(IN2-IN1)/D,再判断实际值和设定值的大小,决定实际值是加上或者减去步进量,再判断实际值是否达到设定值,如果满足则结束本步爬升。分两种情况考虑,步进量为大于等于0或为负,如图3所示为步进量S为大于等于0的程序算法流程图。
模拟量输出程序主要采用语句表(STL)的编程方法,它是一种类似于汇编的语言,执行速度高于梯形图,占用内存空间小,能够解决复杂的循环及跳步。针对于本系统多模拟量,步序复杂且循环不定,而CPU内存有限,此方案能很好的解决这个问题。
3.3 模拟量输入控制
MOCVD 控制系统有29 路模拟输入量,如果全部用模拟量输入模块直接输入,需要29 点的输入。这样设计成本较高,考虑到本系统对模拟量采集实时性要求不高,采用ADG408 译码选择通道,分时输入。每个ADG408 可以接入8 路模拟量信号,使用4 个模拟量通道,就可以输入32 路模拟量,本方案中模拟量输入子系统的成本可以大幅度降低。在系统实时性要求不高的情况下是一种较佳的选择。
模拟量输入子程序采用多路分时选择输入方案,通过译码器在某一时刻选择其中的一路作为输出传送到模拟量输入模块上的一个通道。ADG408 芯片译码选通和PLC 模拟输入量读数处理,在时序上应该严格区分,避免读数混乱。保证在译码选通和PLC 读数的任何时刻,仅有一路模拟输入量处于选通及输入读数状态。如图4 所示,8 路模拟量AI1—AI8,接入ADG408 中,编写程序输出数字量信号控制ADG408 的使能端EN,信号控制端A2、A1、A0,从而实现分时选择多路模拟量中的一路,将其输入到PLC 的模拟量输入模块中,数据进行相应的存储及处理。
3.4 数字量输出控制
数字数出量的控制对象主要由电磁阀、接触器、电机、气动阀等。对于数字量输出控制,其程序设计思想,在每步开始的时候,从相应的数据区中,调用本步对应数字量的数据,为了实现上位机实时控制的功能,判断上位机监控系统是否实时修改某个数字量的输出值,如果上位机修改了, 则数字量的有效输出值以上位机修改值为准,否则按配方表的配方设定的进行输出。
3.5 数字量输入控制
数字量输入控制主要指系统的报警及故障处理程序,报警程序设计包括自动和手动。报警信号由传感器检测,传送给PLC,程序根据报警信号做出相应的安全保护动作,给出触发信号使报警信号灯亮,蜂鸣器响,暂停系统运行,切断感应加热器、或者关闭相应的**压力控制器。
4 结论
本文提出的控制系统应用于西安电子科技大学第二代MOCVD系统,相对于代MOCVD控制系统,特别在步序子程序设计和模拟量输出控制上有了很大的改进,在步序控制上采用顺序控制设计法来控制不同步之间的动作和命令,相对于代移位控制方法[2],步序控制法对于解决复杂循环的问题,更加灵活、可靠。在模拟量输出控制上采用PLC语句表(STL)的编程方法,编写模拟量渐进爬升子程序,解决了在代系统中,大量的模拟量输出由上位机来计算处理再通过PLC进行控制,造成上位机负载过大,控制延迟,响应速度较慢的问题。系统现场试验运行表明,该控制系统稳定、快速、安全,完全满足工艺的要求,具有很高的应用价值,本系统的研制成功将促进国内微电子行业的发展,在国内居于地位。
本文作者创新点:本文提出了一种基于PLC的MOCVD控制系统的设计及实现。特别是在软件程序设计上运用了先进的控制思想,采用顺序控制法解决了MOCVD系统中对于复杂步序的控制,在模拟量输出控制上采用了PLC的语句表(STL)编程方法,来编写模拟量渐进爬升子程序,其处理速度快于梯形图,内存占用少,解决了模拟量输出防止冲击的可能。本系统提出的控制方案,完全满足了系统
1 引言
卿头加压泵站位于永济市卿头正西南处,引黄济运输水管线37+400处,占地1.33亩。加压泵站于2007年12月建成,并取得试运行成功,使得引黄济运工程日输水能力从4万方**到6万方。该泵站使用在大口径管道中直接对口加压,此模式已投入运行近5年,极大缓解了原水供给不足的矛盾,保证了运城市区人们的正常生产生活用水需求。
卿头加压泵站内设高压配电室、值班室及泵房。高压配电室设备有高压开关柜和高压变频器柜。其中,高压开关柜依次为进线柜、计量柜、变用站柜、电容柜、1#电机启动柜及2#电机启动柜,每个开关柜内配有高压综合保护装置,具有标准的RS485通信功能。高压变频控制柜主要包括移相变压器、功率模块和控制模块三部分。值班室内设阀门操作屏及压力报警屏。其中阀门操作屏完成2个进水阀门,2个出水阀门及1个旁通阀门的现场开关阀,并且每个阀门具有开到位、关到位、过力矩及电源指示功能。压力报警屏内配有4块光柱数显表及报警器,每块数显表采集机组前后压力变送器传来的压力数据。泵房内设机组2台,一用一备,其中电机电压为10KV,功率为400KW。改造前设备的控制及数据的采集均由值班人员现场操作来完成。通过设置变频器的人机界面来实现机组运行频率给定及机组的启停操作,通过现场操作阀门控制屏来开关5个阀门。对现有泵站监控系统进行改造和完善,以达到减员增效,进而**自动化水平及经济效益刻不容缓[1]。
2 监控系统的需求分析
在值班室设监控中心,并配一主控柜,可实现与阀门控制屏及压力报警屏的监控功能。实现接收电动阀门的开阀、关阀及停阀命令;采集各个阀门的位置状态及机组进出水口处的压力。
远程状态下,监控中心可实现与高压变频器及高压开关柜的通信。实现远程给定高压变频器运行频率,接收变频器开机、停机命令;采集的数据主要有高压变频器的运行频率、设定频率、输入输出电压、输入输出电流;高压开关柜内综合保护装置中的各种参数,例如线电压、相电压等。
监控中心可实现2台机组的温度采集功能。每台电机采集的参数包括电机定子温度、转子温度、轴伸端轴承温度及非轴伸端轴承温度。
监控系统不仅具有远程机组控制、监测、自动采集的各项运行数据功能,具有实现数据实时显示、报警、存储、曲线、查询、汇总、打印输出及报警功能[2]。这样在简化开机启动流程的基础上,降低了劳动强度,大大**了工作效率。
3 泵站监控系统结构
监控系统按照分散控制、集中操作、分级管理、配置灵活、组态方便的设计思想,分别实现对现场数据的采集和水泵机组的启停控制。系统由3层结构组成,分别是管理层、控制层和现场层。管理层为工业计算机,其主要作用是与控制层的PLC通信,获得生产过程所需的数据,显示工艺流程,提示报警,生成报表并支持报表打印。控制层为PLC控制柜,变频控制柜及高压综合保护装置,其作用一是用于采集2台机组前后的压力、电机温度参数及高压开关柜的电气参数;二是接收工业计算机的命令,实现阀门及电机的启停。现场层为现场设备,是控制系统信号的提供者,如水泵电机内温度传感器、压力传感器、阀门到位信号等。系统的整体结构如图1所示。
4 泵站监控系统设计
本项目主要是通过设计PLC主控柜、电机温度子站,构建工业计算机通信网络,开发卿头泵站集中监控系统,实现系统的远程控制及各系统参数的集中监控。
PLC主控柜为监控系统的核心,内部由一系列PLC组件组成。PLC为可编程逻辑控制器,它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算、顺序控制、定时、计数与算术操作等面向用户的指令,并通过数字或模拟式输入输出控制各种类型的机械或生产过程。本主控柜既要实现对阀门稳定的控制功能,又要完成实时采集机组前后压力以及电机温度功能,还具备与工业计算机进行网络通信的功能。系统选用全球品牌的西门子可编程控制器。为了完成上述功能,根据系统规模统计要求,系统所使用的控制点数见表1。
监控系统中电机温度采用分布式IO设备ET200M来实现组网,该网络在物理层是基于屏蔽双线的电气网络,传输协议采用PROFIBUSDP,使CPU和分布式IO设备之间实现快速、循环的数据交换。[3]DP主站即主控柜,是控制CPU和分布式IO设备之间的连接,它通过PROFIBUSDP与分布式IO设备交换数据并监视DP网络通信状况。分布式IO设备,即DP从站,负责在现场准备数据,使得数据可以通过PROFIBUSDP发送至CPU。本系统1#、2#电机温度保护柜作为分布式IO设备,采用现场通信总线,完成与主控柜的通信。它是由一个IM153-1和一个4通道组中的RTD电阻温度计的8点输入。
系统中高压变频器为HARVSERT-A系列高压变频调速系统,它采用单元串联多电平技术,属于高-高电压源变频器,10KV输入,直接10KV高压输出。其中高压变频器的控制器采用西门子CPU224XP处理器。该处理器具有两个独立的RS485通信口,其中Port0用于人机界面通信,Port1用于与上位机监控系统通信。本通信口采用平衡信号传输方式,可有效地抑制传输过程中干扰,具有通信速率高、通信距离长及并联接到多个端口的特点。[4]网络通信方式为半双工。Port1通信协议采用西门子专为S7-200开发的PPI通信协议,通信规约为:数据位8位,停止位1位,无校验,波特率9600,地址位为2。泵站监控系统基于该网络通信协议实现上位机远程启停高压变频器。
监控系统中高压开关柜的运行参数是通过内部的高压综合保护装置进行联网,采用mark校验码、波特率9600、1位停止位及8位数据位数据规约,来完成高压开关柜内遥测量、遥信量及遥控量的数据采集功能。
监控系统中的网络通信功能主要由以太网通信模块和串口服务器来完成。前者主要实现将主控柜内CPU处理的数据通过TCP/IP协议传入工业计算机,它采用全双工通信方式,通信速率高达100Mbit/s。后者由于工业计算机RS232通信口数量的局限性,监控系统采用串口服务器,它提供串口转网络功能,能够将RS485串口转换成TCP/IP网络接口,实现RS485串口与TCP/IP网络接口的数据双向透明传输。使得串口设备能够立即具备TCP/IP网络接口功能,连接网络进行数据通信,这样极大地扩展串口设备的通信距离。高压变频控制柜及综合保护装置就是通过该设备实现局域网内的数据共享功能。
5 泵站监控系统实现
根据系统的监控需求,本系统采用了西门子公司的S7-300可编程控制器和8路串口服务器组成。主要包括一个DP主控柜主站,2个DP电机温度从站,1个高压变频子站及5个高压综合保护装置子站。DP主站模块主要有1个电源模块、1个CPU模块,2个模拟模块,1个开关量模块,1个通信模块。其中,CPU模块选择为313C-2DP紧凑型CPU,通信模块为以太网CP343-1通信处理器。DP从站模块主要有1个电源模块、1个IM153接口模块,1个SM3318XRTD模拟模块。 [5]高压变频子站与高压综合保护装置通过串口服务器连接,通过交换机完成监控软件与子站的通信。
主控柜主站实现对阀门控制、压力采集,完成与2个电机温度保护子站的连接需要对PLC进行组态。本系统编程软件选用STEPV5.4组态软件。进入软件后先对主站进行硬件组态,选定S7-3132DP为主站系统,添加2个ET200M的接口模块为DP从站。本次设计中两台电机温度子站的地址分别为3号、4号站。为了实现数据传输的稳定性,设定波特率为9600bps。后建立一个数据块,用于观测实时通讯效果。组态效果如图2所示。
图2 监控系统硬件组态
系统硬件组态成功后,根据2台机组的运行工艺要求,编写控制程序。主要包括阀门操作及高压变频器操作两部分。机组开机条件为:电机启动柜合闸,高压开关柜不存在故障报警。高压变频器工作状态为远程并且处于高压就绪状态、不存在故障报警。其中1#机组的启停机流程如图3所示。