西门子模块6ES7223-1BH22-0XA8支持验货
1引言
随着人们生产、生活中对玻璃制品的需求不断增大,做为玻璃深加工的重要一环,人们对玻璃清洗设备提出了越来越高的要求。本文以意大利产的燕华玻璃洗涤设备(1999年产)改造为例,阐诉了如何改造此类设备。
意大利产的燕华玻璃洗涤设备(1999年产)是一类较简单的玻璃洗涤设备。设备中大多是直接采用电气控制系统,控制原理落后,接线复杂,其维护和改进都较困难。随着电气元件的老化,故障增多,故障查找不易,已不能满足生产,近期我们对燕华玻璃洗涤设备(1999年产)中改造中,采用了PLC控制系统,其性能稳定且造价低廉。增加了故障显示功能,大大改善了设备运行的可靠性,使设备维修方便。
2设备工作原理及改造方案
2.1设备工艺流程
深加工的洗涤设备在生产中主要的作用是在玻璃将切割后的玻璃进行洗涤,送去各种加工设备加工,其洗涤能力是保障玻璃深加工质量的重要保证。其工作原理:玻璃由传输送入洗涤仓经水洗,将其送入风干室风干。洗涤和风干的能力,是洗涤机的两个重要参数。
2.2控制要求
意大利产的燕华玻璃洗涤设备(1999年产)是一类较简单的玻璃洗涤设备。设备中大多是直接采用电气控制系统,控制原理落后,经过多年的运用我们发现它主要存在以下问题:
1、控制简单,无法将许多重要参数引入控制,靠人为方式进行产品保障,产品性能无法保障。
2、风干风机采用星、三角型启动,电机启动电流大,能耗高。
针对其存在的问题,我们决定采用PLC和软启动器对其进行控制。其优点如下:
1、在洗涤机上增加高度参数,使用阻式高度测量仪,将高度传回PLC,PLC可针对不同的产品进行高度调节,以达到能更彻底洗涤的目的。
2、水温、风量是保证玻璃洗涤质量的重用参数。将洗涤机的水温度传回PLC,当达到一定的水温和风量才允许玻璃送入洗涤仓,有效地保障了洗涤能力。
3、使用电磁阀控制循环水和去离子水,根据生产自动调节,有效地节约了水的消耗。
4、将故障信号传入PLC,出现故障时,查找方便,有效地保障生产。
5、使用西门子软启动器。
3系统构成
该自动控制系统如图1所示,采用西门子公司的 S7-100PLC系统;该系统是具有高速、高效、高可靠、一体型CPU的PLC系统,界面采用西门子公司的TD200屏显。
主要设备选型
1 PLC---西门子S7-200
CPU CPU224 (自带14点数字输入,10点数字输出)
AI模块 EM231 4入模拟量输入
数字量模块:EM223 8点数字量输入 8点数字量输出
2 人机界面
西门子---TD200
3软启动器
西门子ART 3RW22电动机软启动器 50KW
4结束语:
该系统于2004年6月投入运行后,设备运行稳定可靠,且在达到设备高产量时,也能够满足多种牌号产品的质量要求,大大提高了生产效率,得到了良好的效果。
1引言
塑料封切机是加工塑料包装袋不可或缺的机械设备;定位精度、速度和稳定性直接影响到所生产胶袋的质量和生产效率。为了提高设备的可靠性和提升设备的生产效率,中达电通开发了自动控制封切机系统,以PLC、变频器、伺服、人机界面,取代旧有复杂的“继电—接触器及刹车离合器等控制机构”,使客户在原有的成本上,得到更高的价值服务。该系统是中达电通又一个典型的系统整合成功应用案例,整个系统根据台达产品在系统整合方面的特点,采用台达DVP-ESPLC、VFD-A变频器、ASDA伺服驱动器及DOP-A人机界面;在保证工艺控制要求的情况下,大大提高了生产效率,亦为客户降低了维护及采购成本,为用户提供了高附加值的解决方案。本系统主要效能包括;
(1)效率提高;
(2)生产良品率提高;
(3)封切精度提高;
(4)方便调适;
(5)运行平稳;
(6)操作简便。
2工艺简介
主要工艺过程包括三大部份;送料、封切、出料(成品),图1示出塑料封切机外形图。
图1塑料封切机外形图
主要过程为封切动作,主要有以下几种情况:白袋封切运行、色标封切运行与回切封切运行,主要工艺详述如下。
2.1白袋封切运行工艺
(1)系统上电
·温度控制设备会先调节封刀的温度,使封刀的温度达到设定的需要,手动调整切刀的位置,达到封切长度的需求。
·调节变频器使送料、封切速度及出料的速度达到产量要求,一般情况由变品器速度决定封切速度,工艺中要求封切中变频器单个运行速度一定要大于伺服送料速度。
·调整送料直流电机速度,使送料速度与变频器速度配合,通过直流电机的速度达到一定的张力控制,保持原料的平直。
(2)自动运行模式
·变频器通过机械连杆装置使送料、出料、封切的速度达到协调控制,送料与出料同步进行。
·封切刀在主电机通过机械传动装置控制封切刀上下往复运动。
·封切完一个胶带,通过传感器触动PLC对封切工作计数一次。
·当系统接到人机界面或控制盘上按下停止键,系统会立即停机,封切刀会停止运行回复到高位处,方便手动排除故障,取出问题的胶带。
·在系统设定的批量生产个数将到达前,系统会提示报警,到达批量生产个数系统将自动停机并将计数值清为零;待系统停机达到继续运行时间,系统会继续自动运转(不需按激活按钮),从新开始计数。
(3)手动运行模式
·手动运行工艺与自动运行工艺要求一样,唯一差别在于如果系统设定在手动运行模式,则当批量个数到达后,系统会自动停机,需要按下激活按钮后,系统才会运行。
2.2色标封切
色标封切的加工过程如图2所示。加工过程特点述说如下:
图2色标封切的加工过程
·色标封切的工作原理与白袋运行原理相似,也是封切刀在低位时伺服电机驱动出料辊夹着塑料薄膜带以系统设定的塑料袋长度转动一次;
·色标封切与白袋运行的差异在于色标封切时,会产生累积误差,累积误差过大时会影响塑料袋封切的品质,色标封切到达一定的累积误差后,就要进行停机及误差补正;
·色标封切—封切刀到达低位点时,系统会自动对批量计数一次,每追到一次色标信号时计数一次(当没追到色标信号时,追色不计数)批量的计数次数与色标的计数次数的差值等于设定的追色误差次数时,系统停机且报警;
·追色理想的情况是使用色标信号来控制封切及停机,这样可以做到封切没有累计误差,由于封切机对精度要求0.5mm,一方面强调速度,故可以根据客户需求自行选择。
2.3回切功能
·系统回切功能的目的是为了防止“在封切时由于温度太高导致塑料袋溶化与辊轮相粘,造成下次送料在切刀处堆积”的缺失;
·当系统设定为回切功能开始送料时,伺服先会反转回切设定的长度距离后停止,再正转“回切长度和设定袋长距离之和”后停止;
·回切运行时,需在人机上设定的口袋长度,采用回切会降低系统精度,使用过程中将回切速度开放给客户,以利客户调整速度改善精度。
3系统简介
根据封切机系统的特点和功能要求,将整个系统主要分为控制系统、伺服驱动系统、监控系统、变频器调速系统四大部分。
(1)PLC控制系统
控制系统采用台达DVPES系列的PLC作为主控核心,台达DVP-14ESPLC具有8个输入点及6个输出点,该PLC主机自带两个串行通讯口,一个为RS485通讯口另一个为RS232通讯口。
选用ESPLC的原因;
·在原有的成本基础上,提供高厂商产品的附加价值;
·ES PLC具有的双通讯口,可以运用通讯的方式,简化系统程序以及配线,完成系统整合与控制;
·PLC对伺服的控制是以通讯的方式完成,而不是由传统的PLC发送脉冲的形式来控制伺服,以通讯的方式对伺服位置、转速等参数进行设定与控制,具有jingque度高、成本低的特点;
·与台达伺服、人机界面等产品,可透过通讯及内部协议,更强化了工作效率;
·台达伺服特有的定位功能,是实现封切机单轴控制的关键,台达伺服编码器10,000线以及伺服内部自带定位模块的功能,使在同等精度的情况下,PLC的运行速度能远远高于其它品牌PLC;因为伺服具有输入/输出的灵活定义性能,省去了PLC对的定位需求,也使开发过程变得简单、容易。
整个控制系统是以PLC的输入输出实现逻辑控制,通过通讯来实现对伺服的控制、人机命令的执行及状态的显示。PLC系统架构图如图3所示,I/O点规划见附表。
附表 PLCI/O点规划表
(2)监控系统—人机界面
台达人机界面采用先进bbbbbbsRTOS的技术,系统具备多任务及实时性的功能,比传统单工系统人机界面具有速度快、响应快及稳定性高等优势。
本系统使用台达DOP-A系列5.7”单色人机界面,对系统进行操作、监控制和参数的设置,主要的工作包括;
·运行模式选择(手动、自动);
·控制功能(运行、停止、寸动前进、寸动后退、清零、追色、补码、回切功能选择);
·参数的设置(封切速度、批量、停机时间、总数、切带长度、封切速度、误差次数);
·监控及报警讯息。
人机界面操作方便,故障、报警信息简要明朗,通过人机界面可以大大方便操作员对塑料封切机的控制,提高生产效率。人机主要画面如图4所示,图4(a)为正常运行显示界面,图4(b)为参数设置界面,图4(c)为功能选择界面。
图4人机画面图
(3)伺服驱动系统
台达ASDA系列伺服由低惯量100W到中惯量3kW产品齐全,其功能除了传统伺服驱动位置控制、速度控制及扭力控制外,更开发了伺服驱动的新技术—强健性控制;ASDA系列伺服具有响应速度快、低转速具有高刚性非常稳定运转等优异的特性。
伺服系统是封切机的执行机构,它的好坏直接影响到切袋的精度和系统的稳定性。本系统充分展现了台达伺服系统的优势—通讯能力及内含NC控制器的功能,PLC通过通讯的方式与ASDA伺服进行控制,达到高精度、高速度的要求。
(4)变频器调速系统
变频器调速系统主要是对系统的送料速度、封切速度、出料速度进行调节控制,使送料、封切、出料达到很好的协调工作。本系统由成本和操作人员的习惯考量,仍采用了旋钮式的变频器调速装置,此方案具有方便、直观的特点。
(5)其它辅助系统
系统其它辅助系统还包括温度控制系统和气动打孔装置。温度控制系统采用了简易温度控制调节系统,通过调节温度盘的旋钮,可以调节到用户需要的恒定温度,该系统具有方便调节、价格低廉、恒温性好等特点。气动打孔装置主要是对塑料包装袋(有的食品包装袋需要打孔)进行打孔,通过安装在轮轴上的位置传感器,当轮轴转到设定的位置后,信号会触发气阀打开,完成打孔的动作。
4操作与调试
(1)机械设计时,需要满足:
·(主)变频器频率工作在60Hz时,切刀与封刀来回往复运动达140次/分钟;
·在满足伺服电机的实际连续运行转速要小于或等于其额定转速及其它特性的要求下,伺服机构的传动比及出料辊的外径的合理设计是满足工艺要求的关键。
(2)伺服传动机构采用同步带传动,伺服编码器脉冲数为2500P/R,故其本身误差远远小于0.5mm,引起定位误差较大的真正原因是由于伺服电机起停不够平滑,或者由于送料端的送料速度小于出料辊的出料速度,造成出料辊与塑料薄膜之间的相对滑动;故需要根据伺服电机的起停速度调整合适的加减速时间,调整送料变频器频率使其送料速度要大于出料辊的出料速度,调整结果要以出料辊与塑料薄膜之间不发生相对滑动为准。
(3)温控器的设定温度一般设定在200℃左右,根据主电机的转速高低适当微调温控器的设定温度(以胶袋封口处结实耐拉为合格的标准)。需注意当主电机转速较快时,封刀上下往复运动快,封口时间短,若封刀温度偏低,会导致胶袋封口处不牢;当主电机转速较低时,封口时间长,若封刀温度偏高,会导致胶袋封口处烫穿。
(4)PLC程序根据伺服机构的机械传动比、伺服驱动器的电子齿轮比、伺服电机编码器的线数以及出料辊的周长,可计算出伺服驱动器接收一定数量的脉冲时,伺服电机就驱动出料辊转动带出一定长度的胶袋,如此即可实现定长控制。
(5)色标封切时,PLC若在设定批量内检测不到时色标累计达到设定的保护值,需停止电机运转,并提示报警。
(6)当回切功能运行开时,需确认设定回切长度是否工作正常及切袋是否准确完善。
(7)外接旋钮调位器可对主电机、送料电机、出料电机进行调速;人机界面上伺服速度的设定值可对伺服调速。
(8)系统包括:自动运行模式、手动运行模式及手动调试模式;自动/手动运行模式为生产操作模式,手动调试模式在调机或维修时使用
随着现代电子工业的快速发展,可编程控制器PLC和变频器在各个工业领域的应用越来越广泛,其性能指标也完善,完全适用于铁路运输行业的工作场所。传统门式起重机的控制系统采用各种接触器、继电器、电阻器等元件,电气设备引起的系统故障率较高,造成机械故障的提高和门式起重机使用寿命的降低。本系统的应用可有效地解决这些问题。
1 系统主要特点
1)明显改善结构受力状态。
由于变频器的软启动、软停比功能,起重机起制动运行平稳,对机械、钢结构冲击小,经过实际检测,结果也证实变频调速控制系统的应用可以大大改善钢结构性能。
2)调速范围宽,性能好。
系统采用日本YASKAWA公司生产的磁通矢量控制的起重专用变频器CIMR-G5A型,具有很强的环境适应性,电源电压AC380V±15%,工作环境温度-10℃~+50℃。变频器内部进行模块化设计,集成度高,可靠性强。系统实现闭环控制,具有很强的限速、防失速和力矩控制能力,并具有的伺服响应特性,对急速的负载波动有很强的适应性。系统设有起升大、小车各5挡工作速度,操作者可根据作业要求,随时修改各挡速度值,也可选择操作电位器实现无级调速。
3)结构简单、可靠性高、易维护。
变频调速控制系统采用独立的控制柜,系统设计合理,外观结构十分简单,检修方便。尤其是起升系统用一套装置即可实现原两套起升控制装置的功能,既减轻了小车的自重,改善了钢结构的受力状况,又增加了小车的维修空间,便于日常保养和维护。系统还具有过流保护、过压保护、欠压保护、短路保护、接地保护等功能,确保了控制、保护动作的准确性和可靠性。该系统也可增加自诊断功能,采用人机界而系统,通过同PLC的通讯来实现故障实时显示及处理对策,便于查找故障和维修。
4)提高工作效率和减小机械磨损。
起重机起升系统可根据负荷大小自动切换实现空钩、付钩、主钩等4挡不同的工作速度,减少了速度切换交替的辅助时间,降低了司机劳动强度,可提高装置作业效率达30%左右,变频器的软启动、软停比功能不仅减小了钢结构的冲击、还减小了制动轮与刹车片的磨损。
5)提高了安全性。
起升机构实现了闭环矢量控制,具备了零速转矩的功能,即在起升机构制动器出现机械故障而失灵的情况下,变频器可自动输出足够大的转矩(大于150%)不使负载下滑,从而提高了系统的安全性。
6)超载报警。
90%额定载重量时,发出断续的报警声,显示重物重量但正常工作;
105%额定载重量时,发出连续的报警声,2s后自动切断变频器输出,显示重物重量并停比工作;
120%额定载重量时,发出连续的报警声,立即自动切断变频器输出,显示重物重量停比工作。
7)节能效果显著。
系统所选的变频器具有自动节能操作模式,能较大地提高系统的功率因数和工作效率,节电率可达20% 左右。
2系统构成框图(见图1)
图1
3控制方式及起升电机的选取
1)起升系统采用矢量控制,一台变频器控制一台起升变频电机,其速度的自动切换由变频专用重量测控仪和可编程控制器来完成,大、小车系统控制采用V/F控制,各由一台变频器控制多台电机。所有限位保护触点均作为PLC的输入点,经程序处理再进行保护。
2)起升电机的选取应考虑具备较宽的调速范围采用变频电机代替普通的线绕式电机。变频电机在闭环控制条件下,350Hz为恒转矩调速,50100Hz为恒功率调速。电动机的绝缘等级为F级,绝缘结构具有对于变频器输出高载波频率电压的适应能力。电机采用了独特的
冷却结构,使用单独的冷却风机强迫风冷,保证了电机在低速恒转矩民期运行时不发生过热现象,能够承受200%额定转矩的过载,满足125 %额定起重量的静载试验。
3)选用可靠性高、编程简单、使用方便、功能完善的PLC代替原先的继电器、接触器控制方式,与变频器相结合,实现“机电一体化”。
由于变频器的干扰因素较多,对PLC的参数采集要考虑干扰,在配线和接线等要注意抗干扰的措施,输出线要采用钢管作屏蔽处理,所有的控制线都采用屏蔽线,要注意接地问题。在编制程序时,要采取软件抗干扰措施