西门子模块6ES7231-7PB22-0XA8支持验货
本文介绍16路热电偶采样的PLC(型号为EASY-A1600N),针对一个具体应用作详细说明。
部分:关于EASY-A1600N简要介绍
EASY-A1600N功能:
接收任意分度号的热电偶输入;
内置可编程增益放大器,可用梯形图控制;
AD采样12位精度;内置mV(毫伏)---T(温度)非线性转换函数,转换特性由梯形图指定;
指令和通信均兼容FX2N,与人机界面、组态软件及FX2N可以高效连接;
双排显示功能,用梯形图进行显示控制:如代码显示、数值显示;
支持CAN总线,可作为CAN主站或从站;下辖CAN网络,上接计算机(RS232);
EASY-A1600N硬件对应的控制说明:
1、外接输入通道对应的软件资源:
通道 | 软资源 | 通道 | 软资源 | 通道 | 软资源 | 通道 | 软资源 |
AI00 | D5000 | AI04 | D5004 | AI08 | D5008 | AI12 | D5012 |
AI01 | D5001 | AI05 | D5005 | AI09 | D5009 | AI13 | D5013 |
AI02 | D5002 | AI06 | D5006 | AI10 | D5010 | AI14 | D5014 |
AI03 | D5003 | AI07 | D5007 | AI11 | D5011 | AI15 | D5015 |
2、自带双排数码管对应的软元件:
显示模式:两种模式
模式0 (MODE_FLAG=0) 模式1 (MODE_FLAG=1)
模式切换方法:按下FUN,UP,DOWN键5秒。
模式0:编程显示模式:
显示方式控制字:D5195
D5195_b15=0,按以下方式进行显示。
模式0的四种显示方式
D5195_b15=0 | |||
上排数码管显示方式 | 内容 | 下排数码管显示方式 | 内容 |
十进制方式(b3b2=00):0 | D5196 | 十进制方式(b1b0=00):0 | D5198 |
十六进制方式(b3b2=01):1 | D5196 | 十六进制方式(b1b0=01):1 | D5198 |
代码方式(b3b2=10):2 | D5196,D5197 | 代码方式(b1b0=10):2 | D5198,D5199 |
保持以前方式(b3b2=11):3 | 保持以前方式(b1b0=11):3 |
说明:
当用十进制显示时,若显示内容为D5196的值,若值超出9999,则显示9999。
当用代码方式显示时,其控制位与各段对应关系如下:
视窗码段设定:
上排显示单元码段与数据位对应关系
码段 | h1 | g1 | f1 | e1 | d1 | c1 | b1 | a1 | h2 | g2 | f2 | e2 | d2 | c2 | b2 | a2 |
D5196 | b15 | b14 | b13 | b12 | b11 | b10 | b9 | b8 | b7 | b6 | b5 | b4 | b3 | b2 | b1 | b0 |
码段 | h3 | g3 | f3 | e3 | d3 | c3 | b3 | a3 | h4 | g4 | f4 | e4 | d4 | c4 | b4 | a4 |
D5197 | b15 | b14 | b13 | b12 | b11 | b10 | b9 | b8 | b7 | b6 | b5 | b4 | b3 | b2 | b1 | b0 |
下排显示单元码段与数据位对应关系
码段 | h1 | g1 | f1 | e1 | d1 | c1 | b1 | a1 | h2 | g2 | f2 | e2 | d2 | c2 | b2 | a2 |
D5198 | b15 | b14 | b13 | b12 | b11 | b10 | b9 | b8 | b7 | b6 | b5 | b4 | b3 | b2 | b1 | b0 |
码段 | h3 | g3 | f3 | e3 | d3 | c3 | b3 | a3 | h4 | g4 | f4 | e4 | d4 | c4 | b4 | a4 |
D5199 | b15 | b14 | b13 | b12 | b11 | b10 | b9 | b8 | b7 | b6 | b5 | b4 | b3 | b2 | b1 | b0 |
当对应位为0时,对应码段点亮;当对应位为1时,对应码段熄灭。
D5195_b15=1,以固有显示模式显示数据。
固有显示模式,此处略。
3、自带按键对应的软元件
模块自带三个按键,按键指定为M0,M1,M2,可由梯形图编程使用。
当键按下时,对应辅助继电器ON;松开按键时,对应辅助继电器OFF。
4、内部辅助输入对应的软资源:
环温AD输入通道:D5098。
CPU内部热电阻AD输入通道:D5099。
第二部分:用EASY-A1600N进行16路K分度采样并将采样数据送计算机。
技术要求:
16通道都接热电偶,采集温度0-300度。
300度对应的电压为12.21mV,PLC的PGA可设定为2,PGA(可编程增益放大器)为2时,可对0-15mV的信号进行有效处理。
本例对AD值不进行梯形图滤波,而直接调用温度转换函数,转换后的温度存放在D10-D25的寄存器中,带有一位小数。如120.4度,寄存器中内容为K1204。
EASY-A1600N适用于慢信号采集,每通道采集时间为82ms,全程采样时间为18*82=1476 ms 。
A1600N自带显示,上部显示温度,下部显示通道号,按增减键可人工进行查看。按FUN键可以按设定时间进行巡检D10---D25。
本例将编程口留给人机界面或组态连接连接,而用串口1按照计算机链接方式协议用VB示例将PLC与计算机进行连接。
计算机与PLC通信提供的是一个读写程序。
1 引言
莱钢中小型轧钢生产线于97年建成投产,主要生产圆钢、弹簧扁钢、槽钢和螺纹钢。该生产线PLC控制系统由ABB公司提供,其自动控制系统采用ABBMasterPiece 200/1PLC控制系统,实现了18架轧机以及冷床、冷剪和码垛机的自动控制。基础自动化系统采用ABB公司的RMC200轧钢控制系统,它是一个开放型集散控制系统,由一套MP200/1过程站和一套AS520操作员站组成。过程站由一个CPU机架带一个I/O机架组成,CPU机架上安装了CPU模板DSPC172、内存模板DSMB176以及32通道的DI/DO模板,通过通讯模板DSCS140连接到MasterBus300总线上,与其它过程站进行通讯,I/O机架由总线扩展模块DSBC172实现总线扩展。
操作员站采用HP-UNIX工作站,并通过实时加速器板连接到MasterBus300的冗余接口,通过它操作人员可直接对现场设备进行监控,主要功能有:(1)轧钢生产设备的启停(2)设备数据设定和实时监控(3)事件与报警清单的显示与打印等。系统的主要画面有启动画面、设定画面、维护画面、事件画面和报警画面。系统配置图如图1所示。
2 PLC诊断轧钢生产设备故障的基本原理
轧钢设备的故障信号有数字量和模拟量之分,PLC采用不同的方法对这两种信号对应的故障进行诊断。
2.1基于数字量信号的故障诊断
PLC对数字量信号的识别是通过其数字量输入模块完成的。PLC控制轧钢生产设备时,设备中的压力、温度、液位、行程数字及操作按钮等数字量传感器与PLC的输入端子相连,每个输入端子在PLC的数据区中分配有一个“位”,每个“位”在内存中为一个地址。读取PLC输入位的状态值可作为识别数字量故障信号的根据。诊断数字量故障的过程,实质就是将PLC正常的输入位状态值与相应的输入位的实际状态值相比较的过程。如果二者比较的结果是一致的,则表明设备处于正常工况,不一致则表明对应输入位的设备部位处于故障工况。这就是PLC诊断基于数字量信号故障的基本原理。这种诊断方法,故障定位准确,可进行实时在线诊断。通过PLC的图形功能块编程,还可将故障诊断融入过程控制,达到保护轧钢设备的目的。
2.2基于模拟量信号的故障诊断
PLC对模拟量信号的识别是通过PLC的模拟量输入输出模块来完成的。模拟量输入输出模块采用A/D转换原理,输入端接收来自传感器或变送器的模拟信号,输出端输出的模拟信号作用于PLC的控制对象。PLC诊断模拟量故障的过程,实质就是将在相应A/D通道读到的监测信号的模拟量的实际值与系统允许的极限值相比较的过程。如果比较的结果是实际值远离极限值,则表明轧钢生产设备对应的受监控部位处于正常状态,如果实际值接近或达到极限值,则为不正常状态。判断故障发生与否的极限值根据实际系统相应的参数变化范围确定,利用PLC上的模拟量设定开关可jingque设置该极限值。
当模拟量的实际值达到模拟量设定开关的设定值,PLC还能按照一定的逻辑关系启动开关量模块上的输出位,或者从PLC的通讯口主动发起通讯,从而输出故障诊断的结果,并据此实现对轧钢生产设备的控制。
2.3基于中断方式的故障诊断
PLC的中断方式有:
(1) 输入中断;
(2) 间隔定时器中断;
(3)高速计数器中断。其中,输入中断特别适合于轧钢生产设备的故障诊断。它对应于工业操作站的硬中断,属于外部中断,但PLC的输入中断可用PLC的外部指令来屏蔽。将轧钢生产设备的故障信号作为PLC的输入中断源,一旦出现故障信号,CPU立即响应,停止正在执行的程序,转到中断子程序中去,即可方便地对故障进行处理。它与直接利用PLC的内部逻辑完成故障诊断的不同之处在于:采用输入中断处理故障时,可停止PLC主程序的执行过程,而直接利用PLC的输入和内部逻辑处理故障时,PLC的主程序仍处于运行状态。要根据故障对轧钢生产设备的影响程度选择合适的故障诊断方式。PLC的输入中断方式对后果严重的突发故障的处理特别有用。
引言
计算机及通讯技术已成为工业环境中大部分解决方案的核心部分,其在系统中的比重正在迅速增加。在工业控制中,交流电机的拖动越来越多的采用变频器完成,不仅作为一个单独的执行机构,而是随着不断的智能化,同远程计算机之间可以通过各种通讯方式结合成一个有机的整体。在实际工程实施时,变频器的启动、停止、方向、告警、故障指示以及故障复位等控制通常为端子排开关信号控制方式,速度控制采用模拟量给定值控制方式来完成。由于变频器的输出端会产生强烈的干扰信号,控制器有时会造成误动作的情况。当控制距离遥远时,还存在敷线工程量过大的问题。随着现场总线的底层控制网络的发展,变频器生产厂家推出了具有数据通信功能的产品,采用RS-485通信接口用于系统配置和监控是一种低成本的连接方案。
2西门子变频器的USS控制协议
2.1 USS协议的特点
USS是西门子公司为变频器开发的通信协议,可以支持变频器同PC或PLC之间建立通信连接,常适合于规模较小的自动化系统。它以主从方式构成工业监控网站,在网络内有一个主站,1~31个从站,各站点有唯一的标识码识别。
这种结构的特点是:用单一的、完全集成的系统来解决自动化问题。所有的西门子变频器都可以采用USS协议作为通信链路。数字化的信息传递,提高了系统的自动化水平及运行的可靠性,解决了模拟信号传输所引起的干扰及漂移问题。通信介质采用RS-485屏蔽双绞线,远可达1000m,可有效地减少电缆的数量,从而可以大大减少开发和工程费用,并极大地降低客户的启动和维护成本;通信效率较高,可达187.5kbit/s。对于有10个调速器,每个调速器有6个过程数据需刷新的系统,PLC的典型扫描周期为几百毫秒,采用与PROFIBUS相似的操作模式,总线结构为单位站、主从存取方式,报文结构具有参数数据与过程数据,前者用于改变调速器的参数,后者用于快速刷新调速器的过程数据,如启动停止、速度给定、力矩给定等。具有极高的快速性和可靠性。利用西门子变频器的主机上提供的USS接口,仅在终端机中插入一RS-485通信板,就可实现变频器的全部远程控制。
2.2 USS协议的通信数据格式
USS协议的通信字符格式为一位起始位、一位停止位、一位偶校验位和八位数据位。数据报文大长度位256个字节,包括3字节的头部、1字节的校验码和主数据块,数据块按照字的方式组织,高字节在前。通信数据报文格式如表1所示。
表1 USS协议的通信数据报文格式
表中:STX—起始字符,为02Hex;LGE—报文长度,为n+2,3≤n≤254;ADR—从站地址码,其中bit0~bit4表示从站地址,bit5为1表示广播发送,bit6为1表示镜像发送,用于网络测试,bit7为1表示特殊报文;BCC—校验字符,为从STX开始所有字节的异或和。
在一帧内完成过程控制数据的可以通过指定参数号完成设备控制参数的读写。数据快由参数值域(PKW)和过程数据域(PZD)组成,二者均为变长数据,其格式如表2所示。
表2数据快的格式
表中:PKW域—参数值域,由参数识别码、子参数号和参数值构成,参数个数可根据设备的定义值大可有124个字;PZD域—过程控制数据域,包括控制字/状态字,设定值/实际值,多16个字;PKE参数识别码;IND用来指定某些数组型设备参数的子参数号。
对于SIEMENS的MMV/MDV变频器,协议有所简化:
IND固定为0;PKW为3字格式,即只有PWE1;PZD域的PZD1是控制字/状态字,用来设置和监测变频器的工作状态;PZD域的PZD2设定频率。
3PLC控制变频器的程序设计
PLC通讯程序采用子程序方式编制,主控程序对变频器的控制通过调用有关子程序发送命令完成。数据接受由后台中断程序完成。发送命令子程序将变频器目标速度值和命令参数加工为USS协议格式,发送出去,并设置发送标志,复位接受完成标志,并开允许接受中断和定时中断。
当变频器发送响应报文时,激活后台中断程序接受变频器的状态值和当前速度值,存入接受缓冲区,并复位发送标志,设置接受完成标志。
3.1 主控程序
按照采样时间间隔,主控程序根据发送标志和接受完成标志,检查变频器接受缓冲区内容,并进行相应的处理。通讯程序由通信口初始化、运行、停止、速度设定等5个子程序和一系列中断服务子程序构成,主控程序的流程如图1所示。
3.2通讯子程序
通讯子程序如下:
SBR0
//通讯初始化程序
MOVB 16#49,SMB30
//初始化P0为9600kb,8bit,偶校验
MOVB 14,“P0-ST-LEN”
//设置发送缓冲区,发送字符数
MOVB 16#2,“P0-ST-STX” //STX
MOVB 12,“P0-ST-LGE” //LGE
MOVB 0,“P0-ST-ADR” //主站地址
MOVB 255,“TO”
ENI
ATCH 4,25
ATCH 6,11
RET
SBR2
//电机启动子程序
MOVB BPADR,,“P0-ST-ADR”
//取主控缓冲区的从机地址
MOVW 16#0C7F,“P0-ST-PZD0”
//设定停止电机启动、正转
CALL “Send-BP”
//调用发送程序
RET
SBR 4
//设定电机速度电机运行子程序
MOVB“BPADR”,“P0-ST-ADRS”
//取主控缓冲区的从机地址
MOVW 16#0C7F,“P0-ST-PZD0”
//设定电机启动、正转
MOVW “BIT/SP”,“P0-ST-PZD1”
//取主控缓冲区的速度值
LDW>=“P0-ST-PZD1”,16#4000
//判断是否超过大速度
MOVW 16#4000,“P0-ST-PZD1”
CALL “Send-BP”
//调用发送程序
RET
SBR5
//发送程序Send-BP
MOVD &VB3500,ACO
//计算BCC
MOVB 14,AC1
//循环计算BCC,存入“P0-ST-BCCS”置位重发次数计数器
XMT “P0-ST-LEN”,0
//发送
ATCH 0,9
//发送结束中断的中断服务程序号
MOVB 100,“h”
//定时时间100ms
ATCH 1,10
//定时中断处理,未接受倒数据,重发数据
RET
3.3 中断接收子程序
中断接收子程序由一系列服务程序组成,包括3种情况。
(1)判断中断接收的起始3个字符是否为制定字符,是将接收中断指针指向下一个中断程序,复位定时器,异或计算BCC值;否则将关闭接收中断,等待定时中断进行错误处理。
(2) 对于数据块的接收,采用计数方式控制,当计数为零时,计算的BCC值应为0,否则关闭接收中断。
(3) 定时中断激活时表示接收超时,重发次数值减1,如果不为0,则自动将发送缓冲区的内容重新发送;为0,置位错误标志。
4 结束语
在变频拖动工程应用中,传统的方法是采用开关量和模拟量信号对变频器进行控制,信号容易受到干扰,出现控制上的错误。采用基于RS-485接口的USS通信协议对变频器进行控制的方法,大大减少了系统布线,可以避免现场可能的各种电磁干扰对控制设备的影响,有效地提高系统的抗干扰能力。