西门子6ES7212-1BB23-0XB8型号含义

2024-05-08 07:10 180.174.45.72 1次
发布企业
浔之漫智控技术-西门子PLC代理商商铺
认证
资质核验:
已通过营业执照认证
入驻顺企:
2
主体名称:
浔之漫智控技术(上海)有限公司
组织机构代码:
91310117MA1J3R698D
报价
请来电询价
关键词
西门子代理商,西门子模块代理商,西门子一级代理商
所在地
上海市松江区石湖荡镇塔汇路755弄29号1幢一层A区213室
手机
15221406036
经理
聂航  请说明来自顺企网,优惠更多
请卖家联系我
15221406036

产品详细介绍

西门子6ES7212-1BB23-0XB8型号含义

详细介绍了通过脉冲计数的方式实现10层电梯位移控制的机理。其中,介绍了10层电梯控制系统的硬件组成、软件实现以及脉冲选层的原理;之后分析了Rockwell的CompactLogix系列PLC的工作方式及系统的通讯方式、软件组态和变频器的PLC控制方式,并介绍了用于实现脉冲计数的硬件电路的设计;后通过对实验结果的分析,探讨了影响电梯平层精度的因素并提出了相应的改进措施。实验表明基于CompactLogix控制器的电梯控制系统采用脉冲计数方式可取得较高的平层精度。

关键词:可编程控制器 变频器脉冲计数 电梯控制系统 位移控制 平层精度

1  引言

  本系统是一套10层模拟电梯控制系统,可以实现实际电梯的基本功能。初为了实现电梯的楼层检测、换速及平层停车的控制,是通过在井道内每一楼层装设上下换速、平层挡光板并在轿厢上安装光电传感器的方式[1]来实现的。实验表明,这种方法由于挡光板和光电传感器的安装位置、相对距离等有误差,使电梯运行时常发生机械故障,并且由于挡光板有一定的宽度,造成平层精度不高。改用脉冲计数的方式不仅能实现对电梯的速度控制,还能在不增加任何硬件的情况下对电梯实现位移闭环控制,提高了电梯平层精度。本文将以Rockwell的CompactLogixL31控制器和PowerFlex70变频器为例,介绍利用PLC、变频器及脉冲计数电路进行位移控制的电梯控制系统,分析影响电梯平层精度的因素并提出改进措施。

2  电梯控制系统介绍

2.1  电梯控制系统硬件组成及软件实现

  本系统采用集选控制方式,由电力拖动系统和电气控制系统两部分组成。电力拖动系统主要包括电梯垂直方向主拖动电路和轿厢开关门电路,其中电梯垂直方向主拖动电路由变频器控制的三相异步电动机作为拖动动力源,轿厢开关门电路则采用易于控制的直流电动机作为拖动动力源;电气控制系统由众多呼叫按钮、指示灯、LED7段数码管和光电编码盘、脉冲计数电路、变频器以及控制部分的核心器件PLC等组成。PLC集信号采集、信号输出和逻辑控制于一体,与电梯电力拖动系统一起实现了电梯控制的所有功能。电梯控制系统硬件结构框图见图1。


图1 电梯控制系统硬件结构框图

  电梯的软件设计由若干个功能模块组成,每个功能模块由相应子程序实现,再由主程序分别调用子程序。主要包括以下几个子程序:楼层检测、指示灯显示、手动/自动开关门控制、轿厢内外呼梯记录、呼梯优先级判断、变频器控制、电梯运行控制。其中关键部分包括两点:一是对多个呼梯信号进行优先级判断,根据顺向近优先响应、逆向远优先响应的原则实现电梯正确响应呼梯;二是准确进行楼层检测,动态判断电梯所在楼层、换速及平层位置(由于篇幅限制,具体程序不再给出)。

2.2  电梯控制系统脉冲选层控制原理

2.2.1  利用脉冲计数实现电梯位移控制

将一增量式光电编码盘[2]与电机同轴安装,电梯上下运行时,码盘以与电机同样的角速度转动,产生A ,B 两路相位相差90°的脉冲,通过判断A ,B 的超前滞后关系确定电梯运行方向。每个脉冲对应井道中电梯所走的平均距离l 及电梯每层对应的平均脉冲数N 计算如下:

  式中:D为限速器绳轮直径,为28.5mm;P为码盘旋转一周对应的脉冲值,为1200p(p为脉冲单位);L为电梯平均每层距离,为160mm。将D , P , L 分别代入式(1)、式(2)中,可计算得l≈0.0746mm/p,N≈2145p。

  电梯全程的每一个位置对应一个脉冲计数值,10层全部脉冲值(包括顶层和底层的平层位置到上下限位开关之间的距离所对应的脉冲值)约为20149p,根据电梯各个位置对应的位移和每个脉冲对应井道中电梯所走的平均距离l可以计算出相应的脉冲数,通过比较判断所记录的脉冲数就可实现电梯的位移闭环控制。由l的值可以看出,采用脉冲计数方式实现电梯的位移控制可以得到很高的控制精度。

2.2.2  脉冲计数的两种实现方式

  通过计算输入脉冲数检测电梯轿厢位置,可以有2种计数方式:计数方式和相对计数方式。计数指采用坐标累计所有楼层脉冲数,每一层都对应唯一的脉冲数,这样会占用较多的存储空间。相对计数方式指采用相对坐标进行计数,每次从平层点开始计数到下一平层点,计数器复位,每一层均从该层层高对应脉冲值开始加/减计数。采取这种方式可以节省存储空间,可能出现乱层现象,需要在每一层的平层处增加传感器等硬件发出复位信号或通过编制程序以避免乱层现象发生。由于电梯加工精度不高,每一楼层对应脉冲数可能不同,综合考虑后本套模拟电梯控制系统采用了计数方式。

3  系统实现位移控制的分析

3.1  CompactLogix系列控制器的工作方式及编程环境

  本系统是由1个CPU模块、1个电源模块、3个数字量输入模块、4个数字量输出模块和1个PowerFlex70变频器构成的电梯控制系统。其中PLC采用CompactLogixL31控制器,它属于CompactLogix系列,是Rockwell目前主推的Logix控制平台[3,4]中的一款中型PLC。其具体工作方式[4~6]分析如下。

  (1)控制器采用具有优先级的实时多任务操作系统,支持8个可组态任务。其中有一个连续性任务,其他为周期性任务或事件性任务(优先级为1~15,数字小的优先级高),每个任务又包括若干程序以实现逻辑控制。

  (2) Logix系统中设备之间通过“连接(connection)”或者“非连接的信息交换(unconnectedmessage)”两种方式进行数据通讯。CompactLogix系统使用“连接”传送I/O数据,对于本地I/O模块,控制器都会和每个模块分别建立一个直接连接,即控制器与I/O模块之间建立一种实时数据传送链路。

  (3) 系统本地框架中的数字量输入模块采取多信道广播数据(循环数据交换)的工作方式。由RPI(requested packetinterval)指定模块多信道广播(multicast)其数据的速率,如果在RPI时间帧内没有改变状态COS(change ofstate)发生,模块就按RPI指定的速率来多信道广播数据,否则将改变后的状态按RPI发送。对于系统本地框架中的数字量输出模块,控制器会分别按RPI和在任务执行结束时将数据发送到相应模块。RPI设定值范围为1~750ms,但它会受系统本地框架中扩展I/O模块数量的影响,一般情况下,1~4个模块RPI快为1.0ms,5~16个模块RPI快为1.5ms,17~30个模块RPI快为2.0ms。

  (4)控制器使用一个优先级为7的任务专门用来处理I/O数据。这个周期性任务按RPI执行,只有优先级高于7的任务方可中断处理I/O数据。即I/O的更新同逻辑的执行过程异步进行,这便于应用系统尽可能收到更新信息。CompactLogix系列控制器的编程环境采用RSLogix5000[7]。

3.2 控制系统的通讯方式及软件组态

  CompactLogix L31控制器通过RS232串行口、采用DF1全双工通讯协议实现控制器与PC的点对点通讯。连接好硬件线路后,利用RSLinx软件来对链接工作站和控制器的网络组态通讯驱动程序,实现控制器与PC的通讯。可以通过RSLinx的自动组态功能实现控制器型号、波特率、校验、停止位、错误检测等的自动组态。本系统中对于CompactLogixL31控制器所带的两个RS232串行口,采用其中的完全隔离端口(通道0),如果采用控制器的非隔离端口(通道1),需要在控制器与终端设备之间安装隔离器[5,6]。

3.3 变频器的组态及PLC控制

  通过变频器的LCDHIM(液晶显示人机接口)进行相关参数的组态,变频器的组态包括:组态变频器的输入电压,设置电动机的额定数据(额定电压、额定电流、额定转速、额定功率等)及加/减速的斜坡时间,优化电机转矩,设置变频器的大/小频率及七组预置频率值,设置变频器的方向模式等。

  变频器的PLC控制是通过PLC的输出模块控制变频器的数字IO端子块实现的。PLC的数字量输出模块与变频器的数字IO端子块的接线如图2所示。图2中,PLC数字量输出模块1769-OB16的电源端+VDC接24V直流电源的正极、DCCOM端接24V直流电源的负极并与PowerFlex70变频器数字I/O端子块的8号接线端(数字输入公共端)短接。PLC数字量输出模块的OUT0~OUT5输出接线端分别与变频器数字I/O端子块的1#~6#接线端连接,实现PLC对变频器的控制。图2中,变频器数字I/O端子块1#~6#接线端对应的参数名称和组态信息如表1所示。PLC数字量输出模块的OUT3、OUT4、OUT5(与变频器数字I/O端子块的4、5、6接线端相对应)输出状态的不同组合对应七组预置频率中的不同值,对应关系如表2所示。这样PLC可以根据轿厢当前楼层与要达到的楼层间的距离向变频器发送不同的频率命令。

图2 PLC数字量输出模块与变频器数字IO端子块间的接线图


表1 与变频器数字I/O端子号对应的参数信息


表2 PLC OUT3、OUT4、OUT5选通与预设频率间的对应关系

3.4  脉冲计数的实现

  由于传统PLC的I/O控制采取集中输入、集中输出的方式,对于宽度小于扫描周期的脉冲信号必须采用高速计数器来实现脉冲计数,否则可能会丢失大量的脉冲信号。对于CompactLogix控制器,可通过扩展高速计数模块(1769HSC)实现脉冲计数。考虑到CompactLogix控制器本身的I/O更新和逻辑执行是异步进行的特点,本系统中自行设计了一块计数电路板,从而代替高速计数模块来解决高速脉冲计数的问题。

  计数电路板的计数模式为环计数模式(一般高速计数模块的计数模式[2]有两种:线性计数模式和环计数模式),计数范围为0~+65535,双向计数。脉冲计数电路板以4片74LS193芯片(高速计数芯片)为主要元件,还包括电平转换电路、计数器复位电路等其它辅助电路。设计过程中为提高抗干扰能力,对于输入信号采用了差分电路;为提高电路的响应速度,电平转换电路中的光耦采用了高速光耦。将脉冲计数电路板的输出信号引入PLC的一块扩展输入模块,通过直接读取此模块的输入状态得到对应的脉冲数,由PLC控制计数电路清零复位。脉冲计数电路结构图见图3。

图3 脉冲计数电路结构图

  采用这种方式取代高速计数模块,硬件设计增加了系统的开发时间,且计数精度没有高速计数模块高,但实验表明电梯仍然可以实现较高的平层精度,取得了良好的实验效果,并且节省了购买高速计数模块的昂贵费用。

 实验结果分析及改进

4.1  实验结果分析

  针对本10层电梯控制系统,分别编写简单控制程序(只实现计数和停车功能)和复杂控制程序(实现了电梯的所有基本功能)并进行多次实验,表3给出了部分实验数据。其中任务与程序的大扫描时间可通过读取程序运行过程中的相关参数得到;记录从发出停车指令到实际停车所需脉冲数并对多组数据求平均值,可得到电梯停车所需脉冲平均值;电梯快速运行时码盘发出脉冲的周期可通过如下方式求得:编制简短的延时程序,记录延时时间及脉冲变化值并求得脉冲的周期,对多组实验数据求取平均值。以电梯平层停车所需时间(可由电梯平层停车所需脉冲数乘以脉冲的周期折算得到)为例,通过比较得出,影响电梯平层精度的因素除减速机齿轮啮合间隙等机械因素外主要有以下4点:

  (1) 脉冲计数电路的精度限制造成计数累计误差较大;

  (2) 电梯轿厢有惯性且变频器响应有延时,故电梯平层停车需要一定延时时间(t1);

  (3)负责计数的输入模块各输入口的状态是按RPI不断刷新,程序中对应脉冲值只有在控制器扫描时才被刷新(刷新的大延时时间为控制器的大扫描时间),当程序较复杂扫描时间大于脉冲宽度时,程序中读取的脉冲数值就不是一个连续变化的数,即扫描间隔会造成一定的死区时间(t2);

  (4) 从发出停车指令到输出端口状态的刷新存在一定的延时时间(t3)。

表3  电梯控制系统实验数据

  实验数据分析如下。

  当程序较简单,扫描时间较短时,可以通过判断单个脉冲值实现楼层检测、换速及平层停车,即平层误差可在±1个脉冲的当量范围,平层精度较高。根据表3所列数据,电梯停车所需时间为t=t1+t2+t3=t1=34×1.828=62.152ms,其中t2=0,t3=0,可见电梯停车时间仅为克服电梯惯性和变频器响应所需时间(t1)。为了使电梯控制系统可实现的功能更为完善,往往逻辑程序较复杂扫描时间较长,此时t2,t3不为零,必须通过一个范围来判断脉冲值以实现位移控制。电梯停车所需时间为t=t1+t2+t3=62.152+(37-34)×1.828=67.636ms。例如,需将2300≤Local:7:I.Data≤2310作为楼层检测、换速或者平层停车的判断条件,其中Local:7:I.Data表示位于第7槽的数字量输入模块对应的状态即输入脉冲值。

4.2  改进措施

  为减小累计误差,可待电梯运行到底层时,通过硬件方式将计数器清零复位;由于t1为一固定值,故可通过软件程序避免由t1带来的平层误差。实验表明,采取以上措施并考虑减速机齿轮啮合间隙等机械因素的影响后,电梯平层精度可达±1mm。为了提高电梯位移控制的精度,实现平稳、快速、准确平层停车,必须尽可能减小t2和t3,本系统采用了以下优化软件程序的改进措施。

  (1)程序中适当增加读取扩展输入模块输入状态(Local:7:I.Data)的指令,从而尽量增加控制器对脉冲值的扫描频率,减小刷新延时时间。

  (2) 选取较小的RPI如1.5ms。

  (3)采用中断的方式增加扫描频率。例如,控制程序在连续性任务中实现而将判断输入脉冲值(Local:7:I.Data)的指令放到一个周期性任务中,选择较小的周期如1.5ms。考虑到负责处理I/O数据的周期性任务的优先级为7,此处周期性任务的优先级选择1~6。

  实验表明,采用改进的方式后电梯可以实现良好的运行效果,平层精度小于±0.5mm。

 结束语

  采用光电编码盘脉冲计数的方式取代井道中安装换速挡光板的传统方式,实现对电梯的位移闭环控制,不仅提高了平层精度,软件编程灵活,便于实现全数字化控制。多层电梯平层精度的提高,除了要保证机械装置的精度较高外,关键在于选择合适的控制器以及对控制算法的改进,采用自行设计的计数电路板代替高速计数模块使脉冲计数的精度有些影响,但由于CompactLogix系列控制器采用新的工作方式,电梯仍可实现较高的平层精度。以后可以尝试采用带工业以太网口的控制器(如CompactLogixL32E),通过以太网代替串行通讯或者通过现场总线实现控制器与工作站的通讯,从而实现上位机对电梯的监控或对多台电梯的qunkong,这也将成为继续提高我国电梯控制水平的发展方向。

1、引言

   现代商业生产流通领域中,产品都离不开包装。如牛奶包装箱、水果包装箱等。而包装纸箱的生产中贴箱机每天处理几十万件应是一件量非常大的生产任务,如果不能实现自动化的生产,将会消耗大量的劳动力,效率和质量方面都很难提高。本设计就是将PLC应用于贴箱机系统中,从而使纸箱的生产实现自动化,其主要的任务是如何将纸板加工成型,打包成捆,如何进行生产过程中的自动控制,它是机电一体的纸箱机械产品。总之在保证工艺控制要求的情况下,大大提高了生产效率,有很广阔的市场前景。

2、系统控制特点及工艺

2.1 控制要求及特点

(1) 吸附进纸,确保了纸板吸进纸的位置准确;
(2) 折叠部上下传输带夹紧纸板送纸、左右吸附腔吸附送纸和运转与众不同的两侧竖带夹紧纸板送纸相互配合,确保折叠纸无歪斜;
(3) 左右下纠偏带各配增减速器,折叠时摩擦强制前后扯动纸板纠偏效果明显;
(4) 采用崭新的分垛逐出装置技术,比国外先进的相似装置的性能更为稳定可靠、运行更为迅速。遇不良纸板时卡纸混乱几率大幅度降低;
(5) 人机界面化,可显示生产速度,纸张数及相关的参数;
(6) 实现了A/M的控制方式。

2.2 工艺简介

   本系统以PLC为核心,由于该系统所带负载不大,可用一台达变频器带动一台3.7kW的异步电动机,该电机拖动主传递装置。当物料准备好后,离合器合闸即将送料,左右电机定纸箱的大小,用转速检测装置测速度,用光电传感器检测纸箱的位置信号,从而使伺服机工作。触摸屏可以实现友好的人机界面,可以在线的监视系统的运行情况,并进行相应的参数修改。纸板料从平放台进入机器到完成加工全实现了自动化,其工艺简图参见图1。


图1 系统工艺简图

   整个轨道是纸板成型的通道,轨道的形状决定纸板所加工纸箱的形状,以下对各个主要部件做简单的介绍。

(1) 进料装置

   由于纸板是流水线加工的,当工作台上放有足够多的加工纸板时,才能进入平稳连续,不重叠的工作状态,提高了生产率;

(2) 辊矫直机

   为了让纸板经过时垂直于传送带,并使其紧贴轨道以便纸板较为准确地成型;

(3) 测速检测

   用抗干扰能力强的接近开关作为传感器,并将其所产生的脉冲信号给PLC的高速计数器;

(4) 传送装置

   由电动机带动,它控制主生产线的速度,并由变频器进行控制;

(5) 纸板矫正

   主要由位置信号传感器和伺服系统组成,它主要是矫正成型的纸箱在轨道上的位置偏移,并为后序的纸箱打包做好准备;

(6) 记数传感器

检测轨道上的纸箱数,以便定量打捆;

(7) 纸箱叠放台

把传送的纸箱给叠放,定数量给推出;

(8) 打捆

将定数量的纸箱捆扎好。

3、控制系统设计

   纸板加工成型过程,有一套严格的工艺流程,为了满足系统的控制要求,采用PLC、变频器、伺服机、人机界面及高性能的传感器相结合,有效地解决了实际问题。也使系统的构成简单,功能强大,可靠性、可操作性和可视性都提高了。

3.1 系统的硬件构成

   该系统PLC采用OMRON公司的CPM1A-30CDT-A,30点I/O口,18点输入,12点输出,且还留有扩展的余地。该机型属于欧姆龙公司C系列的小型机,结构紧凑,功能性强,有很好的性能价格比。变频器(VFD-B-5.5kW)和伺服装置(ACservo HO系列)以及触摸屏(PWS717-STN)都采用了功能性比较强的台达系列产品。各硬件构成可见图2的硬件构成框图。


图2 系统硬件构成框图

3.2 变频器

   本系统采用了较为先进的台达变频器进行调速,它调速方便可靠,且调速的精度高。为了适应这种工艺负载,需要在调速时使电动机输出恒定的转矩,应用V/F控制特性的变频器在基频应用V/F控制特性的变频器在基频(台达A型机的参数是Pr04)以下调速。本系统应用两台台达变频器,它们是主从的关系,即从变频器的频率的给定必须得跟随主变频器的给定频率的变化,且保证从变频器的频率输出略高于主变频器的频率输出。

3.3 伺服纠偏装置

   由于纸板在轨道上传送时,难免会出现位置偏差,这就得需要有能够快速矫正其位置的器件,而伺服电动机正好具备这样的功能。它把输入的控制电压信号变为输出的角位移或角速度,加上控制电压,它便马上旋转,去掉控制电压又马上停转,转速高低与控制电压成正比。此装置具有转动惯量小,摩擦转矩小,运行平稳,噪声小等特点。这里主要利用伺服驱动器对伺服电机的运动特性进行设置,并采用了速度和位置相结合的PID调节,从而使纸箱的位置得到很好的纠正。

4、软件设计

4.1 人机界面的设置

   要很好的对系统进行控制和监视,就得利用触摸屏。在前先确定好相应设备和信号的端口地址,利用触摸屏的编程软件——ADP软件进行界面设置。下图触摸屏的主控画面,它具有友好的人机交流性。通过对触摸屏的操作,我们很容易的了解和监视系统的运行情况,并可以方便的改变系统的运行参数。其主菜单的设计如图3所示。


图3 主菜单界面图

4.2 PLC的程序设计

   为了能使系统各部分协调有序、安全可靠地运行就得配以比较优化的软件程序。整个软件程序采用模块化编程的方法,便于调试、修改及扩充,它主要包含三部分:通行协议部分、参数设置部分和自动运行控制部分,程序总的控制框图如图4所示。


图4 程序流程图

4.3 软件的可靠性设计

   软件的可靠性措施主要包括3个故障检测程序:

(1) 时间故障检测程序:将工序执行时间某一时间余量作为定时控制时间,超时则报警并停产;

(2) 信号比较检测程序:建立故障扫描时钟,使自动式在运行过程中能自动检测出各段单元,从而清除故障;

(3) 当纸板被卡主或重叠时,进行报警或减速停机。


所属分类:中国电工电气网 / PLC
关于浔之漫智控技术-西门子PLC代理商商铺首页 | 更多产品 | 联系方式 | 黄页介绍
成立日期2019年09月10日
法定代表人袁宜男
注册资本500
主营产品西门子PLC模块,变频器,触摸屏,交换机
经营范围从事智能科技、自动化科技、机电领域内的技术开发、技术转让、技术咨询、技术服务,工业自动化设备安装,工业自动化控制设备、电气设备、机申设备、电子产品、五金产品、金属材料、仪器仪表、橡塑制品销售,商务信息咨询,软件开发,建筑装修装饰建设工程专业施工,建筑安装工程(除特种设备),机械设备租赁(不得从事金融租赁),物业管理。工业自动化设备加工、销售。
公司简介本公司销售的一律为原装正品,假一罚十,可签正规的产品购销合同,可开增值税发票,税点另外算,24小时销售热线:15221406036本公司销售的一律为原装正品假一罚十可签正规的产品购销合同可开增值税发票税点另外算24小时销售热线15221406036西门子触摸屏代理商,西门子一级代理商,西门子中国授权总代理----浔之漫智控技术(上海)有限公司本公司专业经销合信/CO-TRUST科思创西门子PLC; ...
公司新闻
顺企网 | 公司 | 黄页 | 产品 | 采购 | 资讯 | 免费注册 轻松建站
免责声明:本站信息由企业自行发布,本站完全免费,交易请核实资质,谨防诈骗,如有侵权请联系我们   法律声明  联系顺企网
© 11467.com 顺企网 版权所有
ICP备案: 粤B2-20160116 / 粤ICP备12079258号 / 粤公网安备 44030702000007号 / 互联网药品信息许可证:(粤)—经营性—2023—0112