西门子模块6ES7211-0AA23-0XB0库存充足
引言
医疗检测设备是一种对运行平稳度,顺畅度及产品噪音要求很高的设备,近期我们成功开发的这家是一家专门从事高端医疗设备生产的厂家,其导轨丝杠一直使用日本THK产品。经过多方对我们的考核,如供应商资质考评,产品样本比对,技术实力检测等工作,客户终在其一款新机型上同我们达成合作意向,并需要中达电通提供具体的设计选型方案供其备案。以下为根据客户实际要求所做的具体设计及计算。
1 客户提供基本参数
负荷质量: M=240Kg
重力加速度: g=9.8m/S2
寿命要求: L=10年
按6年行程为151.2Km算,10年行程为:
L=151.2×10÷6=252Km
2 平卧状态分析
2.1 受力结构及受力分析
2.1.1 受力状况
上图为客户工作平台平卧时的结构图。右上端面为导轨支撑,该部件使用律劲导轨;左侧面为导向导辊,该部件客户自己加工;剖面线部分为客户工作平台,该部件客户自己加工。
2.1.2 受力模型转化分析
根据平卧时的受力状况,进行模型转化,以简化受力分析及计算。转化的标准模型如下图所示。
2.1.3 受力分析及计算
(1)依据模型中受力状况,计算出各点受力如下:
其中:P3 及P4受力对应实际结构中使用导轨上两滑块的受力;
P1 和P2分别对应客户自行设计的两个Guideroller处的受力。
(2)代入数据,实际进行计算。
分别计算出各合力如下:
2.1.4 负载系数的选择及寿命计算
(1)负荷系数选择
衝擊及振動 | 速度 | 振動的測量值(G) | fW |
沒有外部衝擊及振動 | 低速時:V£15m/min | 相當G值£0.5 | 1.0~1.5 |
沒有特別明顯的衝擊及振動 | 中速時:15<v£60m p="" min | 0.5<g£1.0< p="" style="margin: 0px; padding:0px;"> | 1.5~2.0 |
有外部衝擊及振動 | 高速時:V>60m/min | 1.0<g£20< p="" style="margin: 0px; padding:0px;"> | 2.0~3.5 |
以中等负荷进行计算,根据经验,取负荷系数fW=1.8。
(2)寿命计算
根据额定寿命公式:
导轨受力以127.7Kg进行计算;fW=1.8。
参照样本手册,当选用25系列导轨时,C取为2030Kgf。
显然L=34429 Km >252 Km,满足预期的使用寿命要求。
3 力矩分析及计算
本传动方案中,导轨主要承受二个扭矩:重心点的扭矩和侧面guide roller处施加的扭矩。
3.1 中心点扭矩的计算
TG=G×l
其中l=39mm,故,
TG=G×l=240×39mm=9.36Kgf-m
3.2 Guiderolerl处施加扭矩的计算
TP=P×
TP=P× =-7.735×605=-4.679 Kgf-m
3.3 合成力矩计算
线形导轨处承受扭矩为:T= TG +TP
T= TG +TP=9.36 -4.679=4.681 Kgf-m
对应产品手册中25系列导轨倾覆扭矩MC =40Kgf-m,
显然T=4.681 Kgf-m <40 Kgf-m。25系列导轨能满足使用要求。
4 工作台立位时状况
4.1 受力模型转化
该状态下工作时,即将平卧状态的工作台按顺时针旋转90°。根据受力状况,可转化为如下标准模型进行分析计算:
4.2 受力分析及计算
(1)依据模型中受力状况,计算出各点受力如下:
4.3 负载系数的选择及寿命计算
(1)负荷系数选择
5
依据以上各关键步骤,进行计算分析,我们推荐客户选用25系列导轨,考虑受力和力矩等关键参数,完全可以满足使用要求。在客户所要求的使用条件下,安全可靠,在客户所要求预期使用寿命的基础上有较大的安全余量。结合客户现场对导轨和滑快的安装型式,终给客户选配的LSK系列导轨型号为:GR25TA2T1599ICZ0。
目前,客户生产的样机已经装配完毕,并开始进行实验,对设备相关性能及参数进行检测。当前设备的整体运行稳定,效果良好,客户对我们提供的服务比较认可,后续批量生产后会全部选用我们的直线导轨。
此案是一次比较典型律劲导轨替换日本THK导轨的成功案例。客户选择LSK导轨充分显示了律劲产品相对其它品牌良好的性价比,也体现了中达优良服务的优势。这也与我们先期掌握了比较好的时机,地区人员所做的大量客户工作是分不开的。
随着工业自动化程度的不断提高,可编程序控制器(PLC)正在走入工矿企业的每一个角落,只要有控制要求的场合,就有PLC的应用。PLC常被称为全能“工业电脑”,用它可以方便地对工业现场进行实时控制。在工业电气控制系统中,经常遇到控制常数设定和修改的问题,例如:某加热控制系统加热时间常数的设定和改变问题。PLC改变控制常数的常用方法有两种,其一,通过上位计算机对原程序中控制数据进行修改;其二,利用外部装置输入数据,控制系统运行。即由外设将数据送入PLC,进行数据处理,对PLC内部参数进行修改,实现对工业设备的实时控制。第二钟数据输入方法,具有不修改原程序,数据输入方法简单、操作方便,能实现实时控制等优点,不仅适用于计算机设计人员使用,还适用于普通操作人员。在电气控制设备上,有着非常广泛的应用,并且许多厂家PLC产品都具有外部数据输入功能。利用PLC控制技术对外部BCD码数据进行输入,充分发挥工业控制计算机—PLC数值计算和处理能力的编程、控制方法,具有实际应用的推广意义。这里,以SIEMENS公司PLC构成的某加热系统为例,详细、具体地对加热时间常数外部数据输入方法及用户处理程序作以介绍。
1 BCD码数据外部输入应用设计举例
1.1 设计思路
介绍SIEMENS(西门子)公司PLCS7—200的物理存储区结构,一般情况下,物理存储区是以字节为单位的,存储单元为字节单元,操作数长度是字或双字时,标识符后给出的存储单元参数是字或双字内的低字节单元号。图1(a)给出了字节、字、双字的相互关系及表示方法。当使用数据宽度为字或双字时,应保证没有生成任何重叠的存储器字节分配,例如,字地址编码应采用MW10、MW12、MW14······等偶数字地址或MW11、MW13、MW15·······等奇数字地址,由于存储器字MW10占用MB10、MB11两个字节,而MW11则要占用MB11、MB12两字节,存在字节地址重叠单元MB11,字地址编码时奇偶不能兼用,以免造成数据读写错误。图1(b)给出数据存储结构,数据的高位用MSB表示,低位用LSB表示。
图1(a) 以字节单元为基准标记存储器单元 图1(b) 存储器中字节、字、双字之间的关系
以德国SIEMENS(西门子)公司的S7—200PLC为例。构成加热控制系统,加热时间采用三位十进制数的BCD码拨盘从PLC外部输入。PLC输入/输出接点分配如下表所示:
附表:PLC输入/输出接点地址分配
加热系统的加热元件用PLC输出点Q0.0控制,系统起动按钮由I1.4输入,复位按钮由I1.5输入。
图2(a) 主程序流程
图2(b) 子程序流程
这里选择两个字节的PLC输入映象寄存器IB0和IB1作为外部数据输入端,利用三个BCD码拨盘将外部数据分别置入IB0、IB1两个字节中。每个BCD码拨盘需用四位PLC输入点,如个位BCD码8421端分别接至PLC的I0.3、I0.2、I0.1、I0.0输入接点,分配PLC的输入接点IB0的低4位为BCD码的个位数、高4位为BCD码的十位数、IB1的低4位为BCD码的百位数、高4位为无效位。利用传送指令分别将个、十、百位数送入三个内部标志寄存器(或内部变量寄存器)保存,并将送入的十位、百位数分别乘以权10和权100,后将处理好的个位、十位、百位数相加,运算结果作为加热器的加热时间常数,PLC在用户程序初始化时,将其送入加热时间定时器中,对加热器加热时间进行实时控制,PLC在每次运行开始初始化程序中读取BCD码拨盘数据。这样采用改变外部拨盘的数据。即可以灵活地改变加热时间。
后,在图2程序流程中,介绍了外部数据输入处理过程的基本思路。
1.2用户处理程序
用户程序由主程序和初始化子程序组成,根据特殊标志位SMO.1在程序扫描时给出的脉冲信号,调用初始化子程序,实现BCD码的数据输入。这样,在其后的扫描周期中不再会调用该程序,这减少了扫描时间且程序更结构化。用户程序说明:(1)程序段一实现子程序调用功能;(2)段二和段三实现加热器加热控制功能,输出继电器Q0.0由I1.4置位、定时器T37或I1.5复位,定时器T37的计时常数由内部标志寄存器MW8置入;(3)段5—段9为BCD码数据输入、处理子程序。段六、七分别将个位、十位、百位送MW2、6和VW2保存。段八实现十位乘10,百位乘100,运算结果分别送入VD4和VD8功能,并且将个位、十位、百位数求和运算结果送入MW8作为加热器加热时间。(4)段九为子程序返回。PLCS7-200梯形图程序如图3所示。
图3(a)主程序
图3(b) 子程序
2 设计关键技巧和注意事项
设计技巧:是用BCD码拨盘,把加热器的加热时间值置成BCD码数,并用PLC的数据传送指令读入输入映象寄存器,进行运算后,作为控制加热定时器的预置值,从而达到实时控制。
注意事项:是应特别熟悉PLC物理寄存器内部结构,以便正确地确定BCD码数据输入位与PLC输入接点的关系,使之与定时器的时间常数相对应。本参考程序在PLC由STOP状态进入RUN状态时读入外部数据,故只能在STOP状态修改BCD拨盘数据。若需在程序运行其间更改数据时,只要将子程序调用条件稍加改动即可。
3 结束语
随着PLC技术在现代工业中的广泛应用,利用外部装置输入、修改控制数据的应用场合越来越多,PLC应用技术和技巧应迅速普及,以不断提高工业控制技术水平,提高劳动生产率,提高国民的生活水平和综合国力。以上,我们探讨的是一种简单而可靠的外部数据输入方法,可供专门从事PLC应用技术研究的工程技术人员参考。