西门子6ES7232-0HB22-0XA8供应现货
引言
随着我国城乡建设的迅速发展,水、电供应不足的矛盾越来越成为人们关注的问题。例如,人们日常生活中的用水量越来越大,中的用水量的波动也越来越大。以往的供水系统中,水泵的选取往往是按大供水量来确定,而实际的用水量在不断变化。高峰用水时间较短,这样水泵在很长一段时间内有较大余量,不仅水泵效率低,供水压力不稳,造成大量电力、水资源的浪费;并且以往依靠手动操作控制泵的启动、停止,也已不能满足要求。这里,介绍一种变频控制的恒压供水系统,它既能解决人工操作的繁杂劳动和精神压力,又能节约能源[5]。
一、系统介绍
该控制系统主要装置包括:可编程控制器(PLC)、变频器、压力传感器、PID控制器以及相关软件控制单元。该装置形成一套完整的、全自动的、智能的恒压供水控制系统,如图1所示。该系统能够以三种方式工作,分别为全自动、半自动和手动操作方式,其中后两种是在全自动方式出现故障时的弥补。
图1 恒压供水系统简图
2全自动恒压供水控制原理
当主水管网压力传感器的压力信号4~20mA送给数字PID控制器,控制器根据压力设定值与实际检测值进行PID运算,并给出信号直接控制变频器的转速以使管网的压力稳定。当用水量不是很大时,一台泵在变频器的控制下稳定运行;当用水量大到变频器全速运行也不能保证管网的压力稳定时,控制器的压力下限信号与变频器的高速信号被PLC检测到,PLC自动将原工作在变频状态下的泵,投入到工频运行,以保持压力的连续性,将一台备用的泵用变频器起动后投入运行,以加大管网的供水量,保证压力稳定。若两台泵运转仍,则依次将变频工作状态下的泵投入到工频运行,而将另一台备用泵投入变频运行。当用水量减少时,表现为变频器已工作在低速信号有效,这时压力上限信号如仍出现,PLC将工频运行的泵停掉,以减少供水量。当上述两个信号仍存在时,PLC再停掉一台工频运行的电机,直到后一台泵用主频器恒压供水[4]。控制系统设两台泵为一组,每台泵的电机累计运行时间可显示,24小时轮换一次,既保证供水系统有备用泵,又保证系统的泵有相同的运行时间,确保了泵的可靠寿命。
二、系统原理图
1.PLC系统原理图,如图2所示:
图2 PLC系统原理图
2.外部设备接线图,如图3所示:
三、 恒压供水控制系统的编程
本程序用富士专用的FLEX PLC编程器编译[1],利用梯形图清晰直观地展示各设备的运转状况等等。具体编程思想如下:
选择利用FLEXPLC的输入继电器、输出继电器以及内部继电器,确定本设计方案所包括的仪器仪表。即一台富士NB系列PLC、两台7.5KW水泵、一台富士G11/P11变频器、一台压力传感器、一台SR90系列PID调节器、若干个空气开关、断路器、中间继电器等。根据PLC接线原理图(如图2所示),进行详细接线,并参考FUJINB系列可编程控制器得参考手册,对PLC输入输出端子进行定义。
部分梯形图
PLC的恒压供水控制系统部分梯形图如下[2]:
四、系统操作说明
4.1自动控制
1. 设定用户需要的目标压力值
系统送电之后,控制柜面板上的电源指示灯点亮,其下方的温控表将会有显示:PV---.---、SV---.---。其中PV---.---表示水管网中的实测压力值,SV---.---表示用户需要的目标压力值.用户可按动▲、▼键使SV---.--- 中的数字发生改变,直到显示用户需要的水管网的压力值时按下ENT键,结束目标压力值设定。
2.选择需要开启的泵组
自动/停/手动开关向左45度扳动一次时,泵组处于启动状态,系统将选择1号泵组启动;控制柜面板上的自动/停/手动开关扳到垂直位置时,四台泵组均处于停止状态。当将自动/停/手动开关向左45度扳动一次时,系统将选择2号泵启动;
3.变频自动工作开始
当系统检测到某台泵组的启动信号以后,便会使变频器开始升频工作,此时水管网中的压力开始上升,即PV---.---中的显示值开始上升,并不断趋向于用户设定的SV---.---中的目标压力值。当水管网中的压力和用户的设定的目标压力值相吻合(即PV---.---中的显示值和SV---.---中的显示值相吻合)时,变频器的输出频率便会稳定[3]。
4.2自动控制中的部分功能
1.自动切换至工频
2.故障泵组自动退出运行
3.定期倒换工作泵组
五、恒压供水控制系统的优点
1.采用变频恒压供水,消除了主管网压力波动,保证了供水质量,节能效果明显,并延长了主管网及其阀门的使用寿命。
2.用稳压减压阀经济地解决了不同用水压力的问题。
3.拓宽运用变频恒压控制原理,较好地解决了加压泵房与抽水泵房的远程通讯总是并达到异地连锁控制的目的。
4.在抽水泵房设置连续液位显示,并将信号传与PLC,防止泵缺水烧坏电机,设定的取水位置,确保水的质量。
5.电机既有电机保护器,又有软起动器,克服了起动时的大电流冲击,相对延长了电机制使用寿命。
6.由于采用PLC控制的压力自动控制,可以实现无人远程操作,系统的PLC预留有RS485接口,可与公司总调度室计算机网络进行连接。
7.通过采用变频器控制,可在不同季节、节假日、日夜及上下班等全面调控水量。
随着电力电子技术以及工业自动控制技术的发展,使得交流变频调速系统在工业电机拖动领域得到了广泛应用。由于PLC的功能强大、容易使用、高可靠性,常常被用来作为现场数据的采集和设备的控制。本设计就是利用变频器和PLC实现水池水位的控制。
变频器技术是一门综合性的技术,它建立在控制技术、电子电力技术、微电子技术和计算机技术的基础上。它与传统的交流拖动系统相比,利用变频器对交流电动机进行调速控制,有许多优点,如节电、容易实现对现有电动机的调速控制、可以实现大范围内的高效连续调速控制、实现速度的jingque控制。容易实现电动机的正反转切换,可以进行高额度的起停运转,可以进行电气制动,可以对电动机进行高速驱动。完善的保护功能:变频器保护功能很强,在运行过程中能随时检测到各种故障,并显示故障类别(如电网瞬时电压降低,电网缺相,直流过电压,功率模块过热,电机短路等),并立即封锁输出电压。这种“自我保护”的功能,不仅保护了变频器,还保护了电机不易损坏。
PLC特点:,可靠性高、抗干扰能力强,平均故障时间为几十万小时。PLC采用了许多硬件和软件抗干扰措施。第二,编程简单、使用方便目前大多数PLC采用继电器控制形式的梯形图编程方式,很容易被操作人员接受。一些PLC还根据具体问题设计了如步进梯形指令等,简化了编程。第三,设计安装容易,维护工作量少。第四,适用于恶劣的工业环境,采用封装的方式,适合于各种震动、腐蚀、有毒气体等的应用场合。第五,与外部设备连接方便,采用统一接线方式的可拆装的活动端子排,提供不同的端子功能适合于多种电气规格。第六,功能完善、通用性强、体积小、能耗低、性能价格比高。
在应用PLC系统设计时,应遵循以下的基本原则,才能保证系统工作的稳定。
(1)大限度地满足被控对象的控制要求;
(2)系统结构力求简单;
(3)系统工作要稳定、可靠;
(4)控制系统能方便的进行功能扩展、升级;
(5)人机界面友好。
本系统中,为了实现能源的充分利用和生产的需要,需要对电机进行转速调节,考虑到电机的启动、运行、调速和制动的特性,采用ABB公司的ABBACS800变频器,系统中由S7-200系列PLC完成数据的采集和对变频器、电机等设备的控制任务。基于S7-200PLC的编程软件,采用模块化的程序设计方法,大量采用代码重用,减少软件的开发和维护。系统利用对PLC软件的设计,实现变频器的参数设置、故障诊断和电机的启动和停止。
1 本设计的控制要求:
1)系统要求用户能够的直观了解现场设备的工作状态及水位的变化;
2)要求用户能够远程控制变频器的启动和停止;
3)用户可自行设置水位的高低,以控制变频器的起停;
4)变频器及其他设备的故障信息能够及时反映在远程PLC上;
5)具有水位过高、过低报警和提示用户功能;
2 本设计控制结构:
由于现场有一台电机作为被控对象,可以使用单台PLC进行单个对象的控制,只要适当的选用高性能的PLC,完全能够胜任此功能。系统控制结构如图1所示。
PLC采集传感器、监控电机及变频器等有关的各类对象的信息。本系统中,对电机采用一台变频器来进行频率的调节控制。采用PLC输出的模拟量信号作为变频器的控制端输入信号,从而控制电机转速大小,并且向PLC反馈自身的工作状态信号,当发生故障时,能够向PLC发出报警信号。由于变频调速是通过改变电动机定子供电频率以改变同步转速来实现的,故在调速过程中从高速到低速都可以保持有限的转差功率,具有高效率、宽范围、高精度的调速性能。
3 设备的选型
(1)PLC及其扩展模块的选型:
目前,存在着种类繁多的大、中、小型PLC,小到作为少量的继电器装置的替代品,大到作为分布式系统中的上位机,几乎可以满足各种工业控制的需要。新的PLC产品还在不断的涌现,那么,如何选择一个合适PLC?
本系统有一台电机、一个液位传感器、一个变频器、五个继电器,共有十八个I/O点,它们构成被控对象。综合分析各类PLC的特点,终选西门子公司的S7系列PLC。
由于CPU226集成24输入/16输出共40个数字量I/O点,完全能满足控制要求。此PLC可连接7个扩展模块,大扩展至248路数字量I/O 点或35路模拟量I/O点。26K字节程序和数据存储空间。6个独立的30kHz高速计数器,2路独立的20kHz高速脉冲输出,具有PID控制器。2个RS485通讯/编程口,具有PPI通讯协议、MPI通讯协议和自由方式通讯能力。I/O端子排可很容易地整体拆卸。用于较高要求的控制系统,具有更多的输入/输出点,更强的模块扩展能力,更快的运行速度和功能更强的内部集成特殊功能。
根据上述分析,参照西门子S7-200产品目录,选用主机为CPU226 PLC一台、另加上一台模拟量扩展模块EM235。
(2)变频器模块的选型:
目前,市场上存在各种各样的变频器,本设计采用ABB公司的ABBACS800变频器。ACS800系列传动产品大的优点就是在全功率范围内统一使用了相同的控制技术,例如启动向导,自定义编程,DTC控制,通用备件,通用的接口技术,以及用于选型、调试和维护的通用软件工具。内含启动引导程序,令您调试易如反掌;自定义编程:内置可编程模块,犹如PLC令您发挥自如;体积小巧:内置滤波器,斩波器及电抗器、性能卓越。
4 系统的控制流程:
(1)程序设计前准备工作:了解系统概况,形成整体概念,熟悉被控对象、编制出高质量的程序,充分利用手头的硬件和软件工具。
(2)程序框图设计:这步的主要工作是根据软件设计规格书的总体要求和控制系统具体要求,确定应用程序的基本结构、按程序设计标准绘制出程序结构框图,在根据工艺要求,绘制出各功能单元的详细功能框图。
(3)编写程序:编写程序就是根据设计出的框图逐条地编写控制程序,这是整个程序设计工作的核心部分。
(4)程序测试和调试:程序测试和调试不同,软件测试的目的是尽可能多地发现软件中的错误,软件调试的任务是诊断和改正软件中的错误。
(5)编写程序说明书:程序说明书是对程序的综合说明,是整个程序设计工作的
下面是系统设计流程图:
图2 PLC水位控制流程图
5 程序结构:
本程序分为三部分:主程序、各个子程序、和中断程序(见第四章)。逻辑运算及报警处理等放在主程序中。系统初始化的一些工作及液位显示放在子程序中完成,用以节省时间。利用定时中断功能实现PID控制的定时采样及输出控制。在本系统中,只用比例积分控制,确定增益和时间常数为:增益Kc=0.25;采样时间Ts=0.1S;积分时间Ti=30S;微分时间Td=0S。
6 PLC编程软件。
本设计使用的是软件是STEP7-Micro/WIN,该软件主要协助用户开发应用程序,除了具有创建程序的相关功能,还有一些文档管理等工具性功能,还可直接通过软件设置PLC的工作方式、参数和运行监控等。
该软件可以工作于联机和离线两种工作方式,所谓联机是指直接与PLC连接,允许两者之间进行通信,如上装或下载用户程序和组态数据等。离线则是指不直接与PLC联系,所有程序及参数暂时存入磁盘,联机后再下载至PLC。
2. PLC控制系统设计
2.1工艺流程介绍
协鑫热电厂采用秸秆为原料,将其打碎并包装成捆,上料系统将深加工后的秸秆燃料通过散包机进行二次打碎,并将二次打碎后的燃料分散成碎料送至皮带机,皮带将分散后的秸秆碎料送入蒸汽炉的加热系统内充分燃烧,使蒸汽炉循环水转变为水蒸气推动汽轮机旋转,再由动能转化为电能。整个上料系统包括散包机的原料分散和皮带机的物料输送两部分。
散包机原料分散系统
散包机由压料辊、导料辊、输送辊、一次侧散包机、二次侧散包机几部分组成。
秸秆燃料进入散包机后,先由压料辊将其进行二次粉碎,粉碎后的燃料通过导料辊进入输送辊。后由输送辊送入一次侧散包机进行分散作业,分散后经由输送辊送至二次侧散包机进行二次分散作业。
皮带机物料输送系统
经二次分散作业后的秸秆燃料由散包机进入皮带机内,燃料由0#皮带机→1#皮带机→2#皮带机→3#皮带机,后由3#皮带机将其送入加热炉的炉膛内进行燃烧。
2.2系统控制功能
该电厂原有的蒸汽炉及汽轮机等设备均由和利时公司DCS进行控制,根据热电厂上料工艺流程要求以及现有总体布局情况,设计采用将秸秆上料系统的PLC控制站作为现场控制站接入原有DCS控制系统中,以实现“集中监视,分散控制”的整体布局。系统由计算机监控站(电厂原有的DCS监控站)、现场控制站(LK大型PLC)、串口通讯系统以及在线检测传感器等构成。
自动控制单元实现的功能分别是:
采集原料分散系统中负责控制压料辊、导料辊、送料辊、一次侧散包辊和二次侧散包辊等设备的变频器的状态信号及数据信号并对以上设备发送控制信号;实时读取并控制物料输送系统中各皮带机的工作状态,包括各皮带机组的A/B两条皮带的启停控制及防撕裂、打滑、堵料、跑偏、拉绳等在线检测开关。
2.3硬件选型
协鑫热电厂上料输送控制系统采用串口通讯方式接入原有DCS系统。该串口通讯应用MODBUS RTU 通讯协议并通过RS 485模式使其通讯距离延长,抗干扰效果增强。PLC系统采用由和利时公司自主研发的LK大型PLC产品。作为国内大型PLC,LK大型PLC是和利时公司在了十五年控制系统的设计开发及工程实施经验的基础上,充分借鉴国外主流产品优点,完善技术性能,大胆创新架构设计,推出的一款开放性、可靠性、易用性俱佳的高端产品。
系统选用如下硬件产品:
表1 PLC系统硬件选型表
其中, CPU双机热备的冗余结构使整个系统运行稳定可靠。
3. 系统功能介绍
协鑫热电厂原有的DCS控制系统分为生产管理级、现场控制级和就地控制级三层结构,利用高速工业以太网(TCP/IP协议)进行连接以实现信息和资源的共享,其优先级分别为就地控制级高,为现场控制级,低为生产管理级。由LK大型PLC组成的PLC站位于该系统的的现场控制级,作为现场控制站接入电厂原有的DCS系统中。系统结构图如下:
● 生产管理级:位于蒸汽炉、汽轮机联产系统控制室内,由原有DCS监控系统构成。各监控计算机对主要工艺设备的运行状态和生产过程的工艺参数进行数据采集及显示。上料输送系统的PLC控制站通过串口通讯,与DCS系统的通讯服务器连接并由该服务器将PLC控制站数据传入DCS的I/O服务器内,I/O服务器上运行的监控软件将该数据进行显示并下发控制命令。
● 现场控制级:即PLC控制级,由LK大型PLC构成。其功能是读取上料系统中散包机和各皮带机的运行参数并根据生产管理系统下发的指令来控制系统中各设备的运行。采集数据主要包括散包机各组成部分变频器的运行状态、反馈电流以及故障信号;皮带机的运行状态、反馈电流及各皮带机的在线检测开关信号。现场控制级接受生产管理级的调度,但并不依赖于生产管理级而运行:若监控计算机出现故障或并没有投入使用亦或通信网络出现故障,该控制站仍能正常工作,对整个工艺过程没有影响。
● 就地控制级:将设备切换到现场手动状态,以实现设备的就地手动控制。就地手动控制具有高的优先级,主要应用在设备调试、维护阶段。
4. 控制系统特点
协鑫热电厂上料输送系统通过将PLC控制站接入原有DCS系统实现了对工艺流程的监测、控制以及数据的处理、存储、分析以及报表打印等任务。
● 工艺流程显示:显示工艺流程的将所有的设备状态、工艺参数以及各控制回路的详细参数等进行了有针对性的实时采集与显示。
● 设定值显示:包括所有必需参数的设定值、控制方式、调节参数以及其它连锁值、报警值等。
● 报警显示:包括实时报警、历史报警。系统可在线诊断各类故障,查找故障部位并报警。包括工艺数据报警、设备故障报警、系统故障报警,根据不同的报警信息提供不同的报警画面,在故障确认后可实现报警解除。
● 报表显示和打印:采用了DDE技术,从而使用户能够直接使用Excel编制报表。借助Excel的强大功能,用户可以随心所欲地编制各种各样的报表。可以是实时数据的报表,也可以是历史数据的报表。
● 历史数据的存储与检索:对重要的数据进行在线存储,数据的存储时间长为10年。可以通过历史报表或者历史趋势曲线的方式来检索历史数据。
● 控制:在监控计算机上可以进行远程手动控制,使用鼠标、键盘控制PLC来启动和停止现场的设备。
● 操作记录:对重要设备的操作、重要参数的修改均会自动记录,包括登录的操作员、对设备进行的操作、时间以及修改前的参数值、修改后的参数等,以利于管理及事故分析。
● 系统的安全管理:系统设置为多用户、多区域方式,各类用户均有自己的用户名和密码,对应着不同的安全级别,决定了操作员可观察的范围、可使用的功能、可修改的参数等。多可以设置为8级用户、8级区域。
5. 控制系统优点
本方案以PLC和DCS监控计算机为核心,通过RS485的串口通讯方式,将现场PLC控制站与监控计算机连接起来,构成一个分布式控制系统。系统具有如下优点:
◇ 先进性
· 本方案设计中不仅采用了先进的软、硬件,着眼于企业“管控一体化”的需求,贯彻了数字化、信息化电厂的先进思想,使企业生产数据的智能应用成为现实。该方案使控制系统有机地成为企业整个IT架构的一部分。
· 本系统采用先进的计算机控制系统,主要用于热电厂的生产控制、运行操作、监视管理。控制系统配有可靠的硬件设备,和功能强大,运行可靠,界面友好的系统软件、编程软件和控制软件。
◇ 高可靠性
· 控制系统在严格的工业环境下长期、稳定地运行。系统组件的的设计符合真正的工业等级,满足国内、国际的安全标准。并且易配置、易接线、易维护、隔离性好,结构坚固,抗腐蚀,适应较宽的温度变化范围。
· CPU双机热备,任何一个故障均不影响系统的正常运行。
· 现场控制站PLC对工艺过程的控制不会因监控计算机的瘫痪而受影响。
· 现场控制站的PLC能够在恶劣的环境中长期可靠运行,平均无故障间隔时间(MTBF)15年。
◇ 强大的功能
· PLC的编程语言符合IEC61131-3标准,易学、易懂、易用。
· 高速工业以太网作为系统的骨干网络,实现高速数据传输、高度数据共享。
· 组态软件图库丰富,网络功能强大,报警、报表、历史数据以及二次开发功能完善且易用。
6. 结束语
经过两个月的调试和试运行,由LK大型PLC控制的协鑫热电厂秸秆上料输送系统已于2007年9月初正式投入运行。实践证明,LK大型PLC能较好地满足秸秆上料系统的控制要求,对整个上料系统及热电厂的安全、经济运行提供了有力保障。该设计方案整体成本较低、可靠性好、抗干扰能力强、维护成本低、可操作性高,在市场中具备强有力的竞争力,为热电厂行业增添了一套完善的解决方案。