西门子模块6ES7231-0HF22-0XA0技术介绍
在这种保护系统中,使用了大量的中间继电器、时间继电器、重合闸继电器等分立元器件。由于使用的元器件数量和品种多,使得系统接线复杂,给系统调试以及修改接线带来困难。因其潜在故障点多,故降低了整个系统的安全可靠性。还由于对各种继电器每年必须进行动作值、返回值、动作时间等项目的校验,维护时还要打磨继电器接点、并检测接点的开闭特性、检查和清扫二次线等,维护、计表工作十分繁重。
从以上的情况可以看出产生这些问题的关键是使用了大量的电磁式继电器,如果我们能找到一种先进而又成熟的技术产品,并结合工程技术人员多年的设计、运营和维护经验,在其基础上进行二次开发,从而替代目前使用的各种传统的电磁式继电器,并结合已有的电量保护装置组成具有地铁特色的、全新的直流保护系统,就能顺利地解决这些问题,进而加快地铁保护系统的设备改造和技术进步,tigao整个保护系统的安全可靠性。
当前,在工业发达国家的电力、机械、轻纺、冶金、化工等行业中,广泛地应用了可编程控制器这种先进技术。可编程控制器是一种具有控制能力强、操作方便灵活、价格便宜、可靠性高的面向生产过程和逻辑控制的专用计算机。它不仅可以取代传统的继电器控制系统,还可构成复杂的过程控制网络。
可编程控制器作为一种工控产品在工业自动化领域已得到广泛的应用,在地铁/轻轨环控系统(BAS)中也有大量的应用,在直流牵引供电系统中,如何根据系统的特点,用可编程控制器实现非电量保护并与电量保护装置有机地结合起来组成完善的保护系统,还是一个崭新的课题,本文将根据北京地铁的特点,论述可编程控制器在旧线改造和新线建设中的具体应用。
2可编程控制器的发展及特点
随着微电子技术和集成电路的迅速发展,微处理器和微型计算机经过不断地开发和改进,软、硬件资源和技术已经十分完善,价格也很低廉,渗透到各个领域。可编程控制器就是吸收了微型计算机的优点,引入了微处理器和其它大规模集成电路的制造技术,并综合了计算机与自动化技术而开发的新一代自动过程控制装置。
按照IEC可编程控制器的定义,可编程序控制器又称PC或PLC,它是以微型计算机为基础的一种用于工业环境而设计的数字式电子系统。这种系统用可编程序存储面向用户指令的内部寄存器,完成规定的功能,如逻辑、顺序、定时、记数、数字运算、数据处理等,通过数字量或模拟量的输入、输出,控制各种类型的机械或生产过程。
个PLC应用实例是1970年由美国的通用汽车公司应用于汽车制造过程中。PLC的早期目的是为了取代过去的继电器顺序逻辑电路,而实现顺序逻辑控制功能。通过用软件来实现逻辑运算,从而大大tigao了灵活性,特别是在修改时只需改变软件而不用再改变继电器组合和接线,节约了技术人员大量的时间和系统成本,PLC在逻辑控制中迅速获得了广泛应用。
早期的PLC的特点是结构紧凑、功能简单、速度快、采用专用处理器技术、可靠性高、价格低。但随着微计算机技术的发展和IPC技术与开放软件技术的发展,PLC也在不断tigao自己的性能并不断扩展自己的应用领域。当今的PLC具有以下特点:
1)功能丰富
当今的PLC已不再限于完成顺序逻辑控制功能。多数的PLC采用通用的高性能处理器(有的PLC采用Pentium处理器,有的采用Alpha处理器芯片等),采用实时多任务操作系统,在保证快速完成顺序逻辑运算的前提下,普遍增加了回路调节功能、代数计算功能等。当今的PLC已经走出了原来的设备逻辑控制应用领域,而向连续过程控制领域和批量控制领域渗透。
2)网络功能增强
过去的PLC一般限于设备级的逻辑控制,提供简单的慢速的通信功能(只支持RS232、485,通信速率一般在几千字节/秒到几十千字节/秒之间),目的是将系统的控制状态和设备的运行状态传给一些监视设备(如显示终端或PC机)供操作员监视或将操作员的修改指令传递到PLC。一般情况下,PLC自身完成所有的控制功能,通信和监视设备都不工作,PLC仍继续其逻辑控制工作。当今的PLC都提供了高速的通信网络(如Ethernet等),有的PLC还支持快速现场总线通信(ModbusPlus、Profibus、DeviceNet、SDS等)。PLC+网络+PC+SCADA软件已形成了一种非常流行的应用方式。
3)开放图形软件
过去的PLC提供的显示功能极其简单,多数采用数值列表方式或简单的线图显示。现在,一大批的监控(SCADA)软件厂商(如Inbbblution,Wonderware等)在bbbbbbs系统平台上开发了许多功能非常强的监控软件,这些软件一般支持多种PLC连接,具有丰富的图形显示功能,历史数据记录与趋势显示功能,状态报警显示功能,PLC图形组态功能等,使得的PLC再也不是一个顺序逻辑控制黑匣子,而是变成了一个集逻辑控制、调节控制、网络通信和图形监视于一体的综合自动化系统。
4)编程标准化
过去的PLC编程一般是由各厂家提供的LADDER图编程语言。它们形状相似,却不兼容。现在PLC正在向开放性发展。在开放方面,大的进步当属PLC编程语言的标准化。自从IEC1131-3标准推出以来,各PLC厂商积极向该标准靠拢。IEC1131-3标准是为PLC编程标准化所制定的一套欧洲标准。该标准定义了五种不同的控制编程语言:梯形图、顺序功能图(SFC)、功能块图、结构文本语言和指令表。
5)小型化和微型化
当今PLC市场除了呈现高性能和网络功能竞争特征之外,另一个显著特征就是小型再小型,价格一降再降。几年前,微型PLC才大量上市,许多厂家又推出了超微型PLC(具有16或更少的I/O点)。一些微型PLC具有超微型PLC的体积,却有更强的功能,如Omron公司的SRM1体积只有一叠扑克牌大小,却支持可到256点的I/O能力(分散I/O方式);Schneider公司的ModiconTSX MicroPLC支持多组超微型PLC的分散I/O,还提供PID调节功能。微型的PLC一般采用分散结构:控制器体积很小,完成综合逻辑处理和运算功能,而I/O采集和处理则在现场模块中实现。
PLC作为一种先进而又成熟的技术,目前被广泛地应用在电力、机械、冶金、化工、轻纺等各个领域。它不仅可以替代继电器系统,使硬件软化,tigao工作可靠性和系统灵活性,它还具有运算、计数、调节、通信、联网的功能。
PLC与传统的继电器逻辑相比,具有以下优点:
1)由于采用了大规模集成电路和计算机技术,可靠性高、逻辑功能强,且体积很小。
2)在需要大量中间继电器以及时间继电器和计数继电器的场合,PLC无需增加硬件设备,利用微处理器及存储器的功能,就可以很容易地完成这些逻辑组合和运算,大大降低了控制成本。
3)由于PLC采用软件编程来完成控制任务,随着要求的变更对程序进行修改显得十分方便,而这对于布线逻辑的继电器逻辑控制则难以办到。
PLC采用了计算机技术和微处理器,与计算机相比又有以下特点:
1)PLC是在恶劣的工业环境中运行的,它的设计着眼于可靠、高抗干扰、密封及坚固。它不需要一般计算机必需具备的环境要求。
2)PLC一般具有模块结构,可以针对不同的对象进行组合和扩展,以满足工业控制的需要,具有很好的性能价格比。
近年PLC的发展更加迅猛,可编程控制器市场应用的主要趋势是占领中、小型分布式控制系统(DistributedControlSystem,DCS)市场,DCS作为一种有效的控制方式为越来越多的人们所接受,在造纸、食品和饮料、石油化工、医药、电力和公用事业等领域得到非常广泛的应用,而由PLC组成的DCS系统的发展趋势越来越强劲。据美国机构推荐,按以下准则选择:当模拟量多于128路,且开关量少于128点时,选择仪表型DCS;当模拟量多于128路,且开关量多于256点时,选择PLC与仪表型DCS;当模拟量少于64路,且开关量多于256点时,应选择PLC构成的DCS。当然,这个准则仅供参考。
3地铁供电系统
3.1地铁供电系统
地铁的动力来自电力,供电系统在地铁中的重要性是不言而喻的。地铁供电系统是指输电、变电、配电及用电设备的总和,是国家电力系统的一部分,也称为国家电力系统的用户或负荷。它一般包括直流牵引供电系统、动力照明系统和高/中压交流供电系统三部分。高/中压交流供电系统和动力照明系统在电力网中属于配电系统,与一般的厂矿配电系统没有太大的区别。牵引供电系统可分为交流牵引和直流牵引两种,在世界铁道电力牵引中,直流牵引约占55%以上。北京地铁采用的是直流牵引供电系统,直流牵引供电系统直接为地铁列车提供电力,它既不同于一些厂矿的直流电力(如炼钢厂)系统,也不同于铁路的直流牵引,具有地铁独特的特性,这将是本文论述的中心。
3.2直流牵引供电系统
一般来讲,地铁直流牵引供电系统的主要一次设备是牵引变压器和整流器(这两种设备一般称为牵引机组或机组)、直流断路器和直流电动隔离开关,国内地铁系统标称电压主要有750V和1500V两种;主接线形式较多,主要分为带备用母线及其备用闸开关和不带备用母线及其备用闸开关两种;进线柜有些城市设断路器(如北京),有些城市不设断路器(如上海、广州);有一点是几乎所有的地铁都相同的:即同一供电区间的接触轨或接触网由相邻的两个牵引变电所相对应的馈出开关供电,这种供电方式又称为双边供电。
北京地铁一线、环线和在建的新线直流牵引供电系统的标称电压均是750V,牵引网形式也同为下部接触轨馈电,走行轨回流,但它们的主接线的形式却不尽相同,如图1为北京地铁“复八线”牵引降压混合变电所的典型主接线。
3.3直流牵引供电系统的保护
直流牵引供电具有速度范围大、调速方便、易于控制车辆启制动平稳、牵引接触网简单、投资省、电压质量高等优点,但也存在着牵引变电站设备复杂、电网谐波、电腐蚀、电磁干扰等缺陷,并且给电器保护带来相当的难度。目前北京地铁直流750V保护系统中设有电流速断保护、过电流保护、接地保护和微机综合保护,以及机组开关故障跳闸联跳总闸开关、总闸开关故障跳闸联跳分闸开关、分闸开关故障跳闸联跳对侧分闸开关,分闸开关自动重合闸、紧急停电等保护。微机综合保护中含有瞬时过电流(Imax)、电流增量保护(ΔI)、电流上升率瞬时临界值保护(di/dt)、能量积分保护(Icp)。上述诸多保护种类又可以分为电量保护和非电量保护两大类。
3.3.1电量保护
北京地铁从1996年开始引进国外的用于直流供电系统保护的微机综合保护装置,如现已装备于一线、环线和复八线各个牵引变电站的俄罗斯的BZ-M型微机综合保护装置。在此之前,北京地铁一线、环线直流牵引供电系统使用的电量保护,主要是直流快速断路器自身的电流速断保护,以及由电磁式电流继电器、电压继电器等分立元件组成的过电流保护和接地保护等,并使用至今。
目前,国内尚没有成熟的直流牵引供电系统的微机型电量保护装置,而国外已有很多种先进而成熟的馈线微机综合保护装置,如德国Siemens公司的DPU96、瑞士Secheron公司的SEPCOS和德国ADtranz公司的DCP106,以及在北京地铁投入运行的俄罗斯的BZ-M。这些馈线微机综合保护装置中含有的电量保护种类如下:
短路保护包括:
过电流保护
电流变化保护
过电流保护包括:
限时过电流保护
热过负荷保护
其它系统保护:
供电电缆监视
电压监视
其中,DPU96、SEPCOS和DCP 106还提供了Profibus、Modbus或ModbusPlus等工业现场总线接口,具备了与电力SCADA系统,利用通讯的方式直接进行数据交换的能力。从上述几种馈线微机综合保护装置所包含的电量保护种类,可以看出,它们中的任何一种产品,都可以满足地铁目前电量保护的需要。在不久的将来,地铁保护系统中的电量保护将会逐步过渡到微机综合保护装置。
3.3.2非电量保护
机组联跳总闸保护、总闸联跳分闸保护、相邻变电所间的联跳保护、紧急停电、重合闸功能,以及直流断路器和直流电动隔离开关之间的联锁等,所有通过开关量实现的逻辑保护和逻辑闭锁功能,都属于非电量保护的范畴。前文已经提到,地铁供电系统的一次主接线形式多种多样,非电量保护的种类也会随着主接线的形式而有所不同,以适应不同的主接线方式。非电量保护系统的实质就是开关量(或数字量)的逻辑组合。为了实现这种逻辑组合关系,在传统的方法中是使用大量的电磁式继电器进行搭建,其弊端在本文的引言中已经指出,对此我们也提出了自己的解决方案,即采用先进且成熟的可编程控制器技术实现非电量保护
在聚乙烯塑料生产工艺中,挤压造粒设备是一类工艺较复杂的机械设备,其控制系统是保障设备正常运行和产品质量的关键。在以往各生产线的设备中大多是采用进口的配套DCS控制系统,其维护和改进都较困难,并且造价很高。我们在近期新建国产挤压造粒设备中,采用了PLC控制系统,其性能稳定且造价低廉。
在改造前的生产运行中,由于进料的不稳定性及产品牌号改变的经常性,使得手动操作不仅很难使产品达到较理想的水平,经常出现堵料、防爆膜由于压力过高损坏及其它机械故障等,从而生产开工率不高,达不到设备标称产量。采用PLC控制系统控制后,大大改善了设备运行的可靠性及连续稳定性,使产品质量达到较高的水平。
2设备工艺特点及控制要求
2.1设备工艺特点
图1为塑料生产线工艺流程简图,其主要包括混炼机、喂料机、融熔泵和切粒机四个大部分。
混炼机功能是将不同原料成分进行混合,并塑炼成一种稠状流体——熔体塑料;喂料机用于吸纳从混炼机流出的熔体塑料,并将其均匀地传送到融熔泵入口进行迅速地升压挤出。经过塑炼处理过的熔体塑料,在高压下被挤过模板成条丝状;在切粒机中被均匀地切割,后形成标准的颗粒产品,通过颗粒水的冷却并输送到后系统工序。
挤压机的自动控制流程如图2所示:
图中:FT-2425为混炼机入料liuliang,量程为0~15T/h;
PT-2426为喂料机出口压力,量程为0~10MPa;
PT-2427为熔融泵出口压力,量程为0~50MPa;
2.2控制要求
2.2.1主要回路控制
根据设备工艺要求,挤压机主要需要三个控制环节:喂料机控制回路、融熔泵控制回路和切粒机控制回路。还有熔融泵润滑油储油罐温度控制回路和熔融泵润滑油出口温度控制回路等。
①喂料机控制回路——在混炼机的入口设有一电子秤,可检测入料动态liuliang,其变化用于控制喂养机的吃料速度。
②融熔泵控制回路——该回路采用串级控制,即融熔泵的工作速度由喂料机的转速和喂料机的出口压力共同来控制。其中喂料机的转速作为辅助控制参数,喂料机出口压力的PID输出作为主要控制参数,即通过对融熔泵转速的调节,控制喂料机出口压力稳定在5mp。
③切粒机控制回路——该回路也采用串级控制,即切粒机的工作速度由融熔泵的转速和融熔泵的出口压力共同来控制。其中融熔泵的转速作为辅助控制参数,融熔泵出口压力的PID输出作为主要控制参数,即通过对切粒机转速的控制调节,以保证产品颗粒尺寸均匀,外观合格。
2.2.2联锁控制
在设备控制中还需要一些报警联锁控制,主要报警联锁控制有:
①喂料机润滑油压力报警联锁
②熔融泵润滑油压力报警联锁
③喂料机、熔融泵和切粒机电机轴承温度报警联锁
④熔融泵网前、后爆破膜状态联锁
⑤切粒机切粒室视窗开关联锁
⑥切粒机颗粒水liuliang低联锁
⑦喂料机、熔融泵及切粒机转速低联锁
2.2.3手/自动切换控制
由于设备在启动时,运行状态及工作参数较复杂,一般需要操作人员进行手动控制,当设备系统运行较稳定一段时间后,才能切换到自动控制系统。在喂料机控制回路、融熔泵控制回路和切粒机控制回路的控制必须实现无扰动平稳切换。
3系统构成
该自动控制系统如图2所示,其采用上、下位机的体系结构。在控制室内由二台工控计算机作为人机接口操作站,在下位的PLC采用OMRON公司的SYSMACCS1系统;CS1系统是具有高速、高效、高可靠、紧凑型CPU的PLC系统,其CPU选用CS1-CPU65H型号。
在计算机与PLC之间采用Controllerbbbb网络,该网采用双绞通讯电缆,其大通讯速率为2M,大距离达1km。
3.1硬件配置
3.1.1操作站
在控制室内设有两台工控计算机作为人机接口操作站,其中一台可做为系统程序管理员站。工控机主要配置为:PⅢ1.3 CPU、256MB内存、40G硬盘及19”纯平CRT,在工控机插有一块Controllerbbbb网卡——3G8F5-CLK21,用于和PLC通讯。打印机用于主要工艺参数报表的定时打印。
3.1.2PLC模块配置
在PLC中配备的I/O单元如下:
模拟量输入单元——C200H-AD003(8通道、4~20mA输入)
热电阻输入模块——C200H-TS102(4通道、热电阻信号输入)
热电偶输入模块——C200H-TS002(4通道、热电偶信号输入)
模拟量输入单元——C200H-DA004(8通道、4~20mA输入)
开关量输入单元——C200H-ID212(16点、直流输入)
开关量输出单元——C200H-OC225(16点、继电器输出)
3.1.3变频器
混炼机、喂料机、融熔泵和切粒机分别由四台变频器控制,其中融熔泵变频器为高压变频器。
3.2软件构成
系统软件构成如图3所示。在bbbbbbsNT操作系统下,装配有如下介绍的各个软件。
3.2.1操作系统
bbbbbbsNT系统既具有bbbbbbs友好且易于使用的界面,又具有系统的可靠性和数据的安全性。
3.2.2监控软件
系统监控软件采用美国罗克韦尔软件公司开发的RSView32(中文版)工业组态软件,是一种集成式的、组件化的人机接口软件,它运行于bbbbbbs95/98/2000/NT等操作系统下,可实现监视和控制自动化设备和过程。其可以很方便地完成工艺监控画面的形成、数据实时采集、趋势记录分析、报警报表打印等任务。该组态软件还具有很强的网络浏览器集成功能、嵌入标准的编程语言(VB)、在线帮助、支持实时视频图像和嵌入字处理、电子表格和ActiveX文本等功能。
系统监控软件主要完成对设备的主要工艺参数和运行状态分别以工艺画面和表格的形式进行监视、在画面设置并监视主要控制回路的调节参数及过程、对主要仪表数据进行趋势记录、报警记录及联锁值的设定。
3.2.3OPC软件
OPC(用于过程控制的OLE)是一个工业标准,基于微软的OLE(现在的ActiveX)、COM(部件对象模型)和DCOM(分布式部件对象模型)技术。OPC包括一整套接口、属性和方法的标准集,用于过程控制和制造业自动化系统。ActiveX/COM技术定义各种不同的软件部件如何交互使用和分享数据。不论过程中采用什么软件或设备,OPC为多种多样的过程控制设备之间进行通讯提供了公用的接口。
SYSMAC OPCServer是专用于OMRON系列PLC等设备的OPC软件,在该系统用于组态软件RSView32的数据接口,实现与PLC的数据交换。
3.2.4通讯工具软件
FinsGateWay是OMRON系列PLC的通讯接口工具软件,主要用于计算机与PLC各种通讯网络之间的管理,并提供建立通讯的数据接口。在该系统中,其主要用于计算机和PLCControllerbbbb网的之间的通讯控制和数据管理,在其软件中可以对Controllerbbbb网卡——3G8F5-CLK21进行设定和服务启停控制。
3.2.5编程软件
CX-Programmer是OMRON公司PLC的软件编程、调试工具程序,其运行在bbbbbbs98\NT操作系统下,具有丰富、简捷的操作环境和强大的编程、调试功能。OMRON的SYSMACCS1系列PLC具有较丰富的指令系统,其包括继电器指令、定时器和计数器指令、计算指令(包括三角函数、指数、幂运算等)、数据转换、诊断、位移寄存器、比较、数据传送、程序控制和PID控制等指令。利用这些指令即可完成挤压机设备参数的数据采集和处理;顺序和逻辑联锁控制设备电机的启停;各个主要回路的PID调节控制等。
4结束语
该系统于2002年6月投入运行,经过数月的观察及控制参数的不断摸索后,设备运行稳定可靠,且在达到设备高产量时,也能够满足多种牌号产品的质量要求,大大tigao了生产效率,得到了良好的效果