6ES7223-1BH22-0XA8产品特点
一、概述:
九溪水厂座落在杭州市西南面钱塘江畔的珊瑚沙,总设计规模为日供水60万吨,为浙江省大的水厂。其中的杭州西区净水厂工程,日供水30万吨,是杭州市的重大城市基础设施项目,由法国得利满公司总承包,于2000年3月投产运行。
整个水厂的自控系统也由法国得利满公司整体设计,采用的是bbbemecanique公司的可编程序控制器和Wonderware公司的InTouch监控软件,整套系统较好的考虑了水厂的实际情况,采用了冗余的通讯方式,双网络设计,大大tigao了供水的安全性,可靠性。
二、PLC以及InTouch监控软件的主要功能
1、通讯
九溪水厂PLC及上位机的系统分布图
整个自控系统设有7个PLC站,采用TSX P67/87 455 型PLC,各PLC站均配置ETH107通讯卡,采用ETHWAY协议通过光纤为主干网的以太网与中控室主机WSG1、WSG2配置的APPLICOM数据采集卡交换数据,以此实现主机数据的刷新与命令的执行。各子站还设有上位机,均配置3COM以太网卡采用NETDDE协议通过同一个光纤以太网实现与主机3COM以太网卡的数据交换,可显示全厂各站画面数据,当子站与主机之间出现通讯故障时,各子站的上位机将通过ETHWAY协议与自己站的PLC进行通讯,确保畅通。各子站PLC也可以通过FIPWAY网络与中控室的PLC6进行通讯,实现数据的采集与命令的执行。
2、PLC功能介绍:
PLC通过相应的模拟量、开关量输入卡采集各种一次仪表以及反应各类执行设备状态的电信号数据(4~20mA),PLC对其中的一些数据进行处理,一方面将数据传送给上位机,另一方面将有关数据通过相应的模拟量、开关量输出卡传送到各执行机构,控制执行机构的动作,对于由上位机发出的命令则通过PLC 进行重新组态后输出到执行机构,控制其动作。
本系统采用3种控制方式;分别为全自动操作、plc远程手动操作和手动操作。系统主要以全自动控制方式为主,下面以聚合氯化铝(PAC)泵target=bbbbbb>计量泵的控制为例,介绍3种控制方式。混凝剂的投加直接影响到出厂水基本的指标浊度的好坏,混凝剂是水厂中主要的原材料消耗,如何合理、高效的投加混凝剂一直以来都是净水水处理方面研究的目标。九溪水厂采用PAC作为净水混凝剂,通过隔膜泵target=bbbbbb>计量泵对其进行投加,泵target=bbbbbb>计量泵可以通过两个参数来调节其投加量,分别为频率和冲程。在全自动模式下泵target=bbbbbb>计量泵的频率由进水的liuliang来进行控制,泵的频率随着liuliang的变化而调整,泵target=bbbbbb>计量泵的冲程则由游离电位测定仪(SCD)来控制,当原水浊度出现变化时,SCD检测到相应的电信号后传送到PLC,PLC经过P.I.D调节器的运算后向泵target=bbbbbb>计量泵发出调整冲程的命令,此过程中的liuliang、频率、冲程、SCD的数据均通过Intouch在上位机上动态的显示出来,便于操作人员监控;plc远程手动操作则由操作人员根据实际经验在上位机监控软件中输入相应的频率及冲程,通过PLC后输出到泵target=bbbbbb>计量泵;手动操作是操作人员直接在MCC低压开关屏上对泵target=bbbbbb>计量泵进行调节,此过程不经过PLC以及监控软件。
3、监控软件(InTouch)的功能介绍:
1) 提供生产工艺过程流程分布、液位模拟量显示、参数设置、设备运行状态等动态画面。据此操作人员或技术人员可以对整个水厂的工艺生产以及设备运行情况有一个详细而形象的了解。
2) 系统主要参数以及设备的报警信号记录。记录的信息可以供技术人员参考,以分析仪器仪表、设备的运行情况,掌握手的资料,用于改进工艺控制,tigao系统的运行效率。报警信息以显眼的红色闪烁出现,提醒操作人员采取相应的措施,报警信息中还给出了报警的时间、故障的可能原因以及故障的现状。
3) 可以通过键盘(鼠标)直接控制现场的设备,如启动或停止水泵、刮泥桥、排泥阀等。
4) 进入系统的口令保护。以免非工作人员进入系统或随意中断运行中的系统,可以根据不同的登陆级别,实现控制本站的PLC控制设备到全厂的PLC控制设备的动作和参数修改。
5) 数据动态刷新余数据库维护。对于不同的静态画面进行数据动态刷新,加上新的动态实时数据,构成了带动态显示点的工艺画面;数据库的维护通过对存放历史趋势数据的环形队列进行移位,用新数据代替旧数据,使环形队列中始终保存到当前时刻为止30天内的历史数据。
三、结束语
九溪水厂自2000年3月投产以来,利用先进自动控制系统,基本实现了生产过程的全自动化运行,大大减少了操作人员的工作量,降低了员工的劳动强度,自动化程度的tigao使生产一线人员由原来的11人减少到了现在的7人,实现了沉淀池、滤池、污水泵房等生产点的无人化作业,对于氯、氨、矾等药剂的投加也实现了全自动控制,节约了原材料的消耗,降低了制水成本,取得了明显的经济效益。
1引言
某火炮发射车为了tigao命中率,在发射火炮前,必须先进行承载平台的调平。承载平台由四条支腿和四个轮胎支撑,为了保证调平后水平度的稳定,调平时让轮胎离地,只让四条支腿支撑平台,以克服轮胎变形引起的平面变化。要实现自动调平,就必须使电气控制系统和液压系统在计算机的控制下,成为一个有机的整体,协调、高效、准确地运行。平台控制的关键技术是调平算法的选择和自动调平技术的实现。我们使用了2个水平传感器,分别检测前后和左右的倾斜度,而每个支腿的升高都可能引起它们的变化,从控制系统来看,这是一个多输入多输出的强耦合的动态过程[1]。
火炮发射平台应该满足以下要求:
(1) 调平后,平台由四条支腿支撑并与车体脱离;
(2) 调平过程应在短时间内完成,并满足精度指标的要求;
(3) 平台调平后,应进行锁定以保证平台的状态至少24小时不变。
为了tigao火炮的机动性,我们研究开发了PLC控制的自动调平系统,这种系统调平时间短,调平精度高,操作简单可靠,对tigao火炮的机动性能具有重大意义。
2 四点式平台的调平方法
图1是四点式承载平台示意图。按照对称矩形方式,采用4个垂直油缸来支撑平台。这种支撑形式具有稳定性好、抗倾覆能力强等优点,被广泛用于机动火炮的发射过程[2]。
图1 四点式承载平台示意图
调平系统中水平传感器安装如图2所示,水平传感器与平台的一条对角支点连线平行安装。平台有4个支点,平台重心不在两水平传感器交叉点上。如图2所示,2个方向倾角为α和β,传感器夹角为γ,则平台的倾斜度θ可以由α和β合成为:
如果2个方向的控制精度为±δ,则调平后平台的水平误差为:
从(2)式可以得到,控制度δ一定,当γ=90°时,平台的水平误差θ取小值,在大多数的调平系统中,两个传感器都互相垂直安装。此时
也就是说,两边的水平控制度应为整个平台水平控制度的 ,比如要求整个平台的倾斜度为2′,则控制时2个方向的控制度应该为 。
图2 传感器安装示意图
根据水平传感器测出的水平倾角可以判断出4个支承点的高低,找出高点,按照“只升不降”的原则,采用升调平技术,把其他3个支点升高至与高点处于同一水平面后,调平过程结束。其技术关键是如何根据2个水平倾角决定各支点应该升高的高度,以及采用哪种方法去jingque控制各支点升高的高度。、
3 调平的PLC实现及系统构成
由于PLC的高可靠性和接口的简易性,使用PLC实现自动调平是一种很好的方法。假定高支点高度为A,某一支点高度为B,按照升调平方法,则B点需要升高的垂直高度为AB,我们可以用下面的公式计算出该支腿升高AB时所需要的脉冲数n,从而控制该支腿升高的高度,达到调平目的。
式中ΔP是产生1mm位移的固定脉冲,可以用实验方法jingque测出支点升高1mm所需的时间,编程控制加于液压开关的脉冲个数就可实现要求的位移。
本系统选用德国Siemens公司的SIMATICS7-300系列的PLC作为主控元件,其结构框图如图3所示。该PLC系统包含电源模块、CPU模块、模拟量输入(AI)模块、数字量输入(DI)模块和数字量输出(DO)模块[3]。通过2个水平传感器检测平台的左右倾角和前后倾角是否满足精度。检测出的倾角信号经相敏整流电路后送给模拟量输入模块。模拟量输入模块用来输入水平检测信号,自动完成A/D转换,送给CPU模块,与给定水平度进行比较。CPU模块作为控制器,可以发送各种控制命令,接收并处理各种数据,对整个系统进行协调控制。CPU模块输出的控制量通过数字量输出模块,控制各支腿继电器动作,从而可以控制各支腿的升降,达到调平目的。液电压力开关可以检测各个支腿是否着地,避免虚腿调平。支腿着地时,对应的液电压力开关就会闭合,数字量输入模块对应的输入信号就为高电平;支腿悬空时,对应的输入信号就为低电平。CPU模块根据读入的数字量做出相应的处理。
图3 调平系统的结构框图
4 系统的工作过程
本系统的工作过程与系统的软件流程相对应,分为四大模块,分别是:差动着地模块、手动调平模块、自动调平模块、自动撤收模块。根据平台的倾斜度,整个调平过程分为粗调和精调,倾斜度大于5°时,系统粗调,各支腿的动作速度较快;倾斜度小于5°时,系统精调,各支腿的动作速度较慢。其工作过程为:
(1) 启动电机,送启动信号给PLC;
(2) PLC接收到启动信号,执行程序;
(3) 差动放腿40s,保证所有调平支腿着地;
(4) 根据操作指令,执行调平过程:
·按下“手动调平”键,则根据发出的各支腿升降指令进行调平;
·按下“自动展开”键,系统自动读入水平传感器的倾角,判断倾斜度,自动进行调平。采用升调平技术,根据读入倾角值,判断高点,计算各支点需要升高的高度,用(4)式计算出所需脉冲数,把它对应加到各支腿,控制它们的高度,达到调平目的;
(5) 调平过程结束,发射车可以发射火炮。需要撤收时,按下自动撤收键,系统自动撤收所有调平支腿。
5 技术要求与试验结果
本调平系统的技术参数要求是:
(1) 调平精度≤2′
(2) 调平时间≤3min
(3) 保持稳定状态24h不变
试验证明,该系统达到了指标要求,调平时间小于1min,调平精度在2′以内,稳定性满足要求。本调平系统已调试完成,经过多次打靶实验,命中率比较高,取得了令人满意的效果
HT-7U超导托卡马克核聚变实验装置是中科院等离子体物理研究所承担的大科学工程项目,其目标是能在装置上对建造稳态先进的托卡马克核聚变堆的前沿性物理问题开展探索性的实验研究。HT-7U低温系统,作为该项目中主要子系统之一,是为HT-7U超导托卡马克的纵向和极向场超导磁体稳定运
行提供冷量,该系统的2KW/4K制冷机还用来生产液氦以满足其他实验及用户的需求。低温系统由三部分构成:压缩机站、制冷机冷箱部分、托卡马克磁体冷却部分。采用OMRON公司的CS1G CPU44 PLC作为数据采集、控制回路、自动顺序操作和运算的主要设备,其它测量监控设备为辅的方案,实现了压缩机站的实时监测、自动控制和系统运行诊断,满足了系统可靠性、稳定性和实时性的要求,。
1.系统介绍
图1 压缩机站系统流程图
HT-7U氦低温系统的压缩机站部分包括两级螺杆压缩机组、除油系统等设备,其系统流程图见图1。
压缩机部分由低压级和高压级二级串联组成,低压级为三台LG25Ⅱ型螺杆压缩机并联,将氦气从0.104Mpa(P0)压缩至0.51Mpa(P1),总的质量liuliang250g/s;高压级为两台LG20Ⅱ螺杆压缩机并联,将氦气从0.51Mpa(P1)压缩至2Mpa(P2),总的质量liuliang超过360g/s。压缩机站的作用是为制冷机的降温、回温、液化、制冷等各种运行模式提供需要的稳定压力和高纯度的氦气liuliang,它对整个低温系统的稳定性和制冷机的工作效率至关重要。根据制冷机需要的氦气liuliang选择投入或停止压缩机的台数,通过对螺杆压缩机能量滑阀和五个控制阀门的调节使PO、P1、P2稳定在要求的精度范围之内。螺杆压缩机站需要测量的工艺参数主要有:压力、温度、差压、liuliang、液位、转速、真空度、气体纯度、阀门开度、电机电流、压缩机能量滑阀位置,系统共有数字量输入99路, 模拟量输入59路, 数字量输出59路, 模拟量输出6路;需要控制的主要过程有螺杆压缩机的启动、停车和安全运转,压缩机油温的调节,各设备故障时的处理等。
2.监控系统硬件结构
压缩机组监控系统采用上位机和下位机组成,系统硬件结构图如图2所示。上位机使用两台研华工控机,一台作为操作站实现整个系统的监控和数据检测,另一台作为工程师站完成组态软件的设计和开发、PLC程序的开发以及将软件通过串口传送至PLC的CPU单元。下位机采用功能强大、可靠性高、维护方便且抗干扰能力强的可编程控制器OMRON CS1G-CPU44 PLC实现压缩机站大多数参数的采集和控制,一些不参与压力控制的参数如油吸附器压力、缓冲罐压力等信号由研华的ADAN数据采集模块采集,并以串行数据的形式传送给上位机,采用屏蔽电缆作为工控机串口与PLC和ADAM模块串行通信的介质。采用ADAN 4520 RS485/232C转换器是为解决RS232C的通讯距离短和干扰较大等问题
图2 压缩机站监控系统硬件结构图
监控系统的硬件配置为:研华工控机,CPU为PIII 733,操作站还扩展了Controller bbbb 支持卡3G8F5 CLK01-E, PLC配置的模块有基本I/O单元:3块16点输入单元ID212、6块16点输出单元OC225,高密度I/O单元:2块32点输入单元ID216,特殊I/O单元:4块8路模拟量输入单元AD003、1块8路模拟量输出单元DA004、3块温度传感器单元TS102,Controller bbbb 通讯单元CS1W CLK21, ADAN模块有4块8通道模块ADAN 4017、2块3通道模块ADAN 4013和1块RS485/232 转换器ADAN 4520。
通过在现场级PLC的Controller bbbb线缆通信单元CLK21和操作站ISA插槽上扩展的通信单元3G8F5-CLK01-E,将上位机和下位机组成Omron Controller bbbb网络。OMRON公司的Controller bbbb网络(控制器网)是OMRON主要的FA(工厂自动化)级别的网络,是一种使用令牌总线通信的网络,网络中的每个节点都可作为主站进行数据的发送和接收,通过设置数据链接节点间可以自动交换预置区域那的数据。该网络中控制通信的节点称为发牌单元,它控制令牌,检查网络和执行相关的任务。这种总线型拓扑结构具有大的灵活性,易于扩充和维护,满足 了系统可扩展性要求。由于采用了分布式控制技术,可确保Controller bbbb网络不会因某个站点故障而崩溃,tigao了系统的稳定性。本系统中采用屏蔽双绞线作为Controller bbbb网络的通信介质,由于各节点距离小于500m,传输速率达2Mbps,可满足系统实时性要求。PLC网络在完成物理连接后,必须对进行必要的参数设置并建立路径表, 这是整个网络配置过程中重要的部分。设置的参数包括通信单元的单元号、所在网络的节点号、I/O表、数据链接等。只有在完成这些必要的工作后,才能实现PLC网络的互连。本系统中CLK21和3G8F5 CLK01-E模块的参数设置见表1。
表1 Controller bbbb 通信单元参数设置表
3.监控软件结构设计
工业控制组态软件是可以从可编程控制器、各种数据采集卡等设备中实时采集数据,发出控制命令并监控系统运行是否正常的一种软件包,组态软件能充分利用bbbbbbs强大的图形编辑功能,以动画方式显示监控设备的运行状态,方便地构成监控画面和实现控制功能,并可以生成报表、历史数据库等,为工业监控软件开发提供了便利的软件开发平台,从整体上tigao了工控软件的质量。北京亚控公司开发的KingView 5.1是运行在bbbbbb98/NT上的一种组态软件,由工程浏览器TouchMAK和画面运行系统TouchVEW两部分组成。TouchMAK是KingView软件的核心部分和管理开发系统,它的功能是建立动画显示窗口。通过它提供的工具箱可方便建立实时曲线图、历史趋势图和报警记录显示。TouchVEW是显示TochMAK中建立的图形窗口的运行环境。在螺杆压缩机监控系统中,工程师站可运行TouchMAK和TouchVEW,而操作站只允许运行TochVEW。图3是监控软件的结构。KingView 5.1驱动程序通过Controller bbbb网络与PLC进行通信,通过串口与ADAN模块进行通信,分别访问相应的寄存器,以获取压缩机现场各工艺参数的实际值或对现场的开关量和模拟量如各控制阀门的开度进行控制。本系统中将PLC的DM0~DM199设置为可读写区,即上位机可对下位机该区域进行读写操作;将DM200~DM399设置为只读区,即上位机只能读出下位机该区域的值而不能改变。
图3 监控软件结构图
螺杆压机站测量和控制系统上位机的组态软件基本实现了螺杆压机站测控的要求。简洁且形象的模拟了压机站的工艺流程,操作人员能在中央控制室的计算机屏幕上了解压机站的全部运行状况,包括各种报警。取得权限的操作人员能在中央控制室实现对任何一台压缩机单独操作或联机操作,所有的自动与半自动之间的切换都是无扰切换。每个控制按钮和每个自动与半自动切换按钮都有的确认或取消,防止误操作。
4.控制系统设计思想
采用低压级和高压级二级串联的大型螺杆压缩机组系统在德国、日本和法国等国家有过成功例证,在国内尚应用不多。这种系统的压力控制方法主要有二种:一为前级控制,二为后级控制。前级控制把压缩机进气压力作为控制依据,这种方法使系统耦合减小,但压缩机排气压力波动较大;后级控制把压缩机排气压力作为控制依据,压缩机排气压力控制精度高,但系统耦合程度大,系统实现复杂。螺杆压缩机依靠被称为能量滑阀的结构元件的增减载(由电磁换向阀的通断实现)来调节压缩机的容积liuliang,。补气阀和收气阀调节系统中的气体liuliang。
压缩机控制系统要求在保证压力稳定的前提下,提供给制冷机在各个工况下不同的气体liuliang,压缩机控制系统要保持氦气循环系统的liuliang平衡;要保证供气压力(二级压力)的稳定性。按照压缩机系统的结构体系,将图1中P0、P1、P2分别单独进行控制,形成串级控制,这种控制方案可降低系统内部的耦合程度,减少控制的复杂性 。由于压缩机控制系统属于大滞后强耦合多变量过程控制系统,控制系统的数学模型难以辨识,调节各阀门开度的PID控制器参数采用凑试法整定。基于操作人员的手动控制经验,采用模糊控制+专家控制+PID控制的方案来实现系统的控制要求,控制系统结构图如图4所示。
图4 控制系统结构框图
构造两个模糊控制器Fuzzy Controller 1和Fuzzy Controller 2, 以Fuzzy Controller 1为例说明模糊控制器的设计。根据螺杆压缩机运行中积累的人工操作经验,确定被控制量和控制量的模糊子集如下:E1、EC1、U1:{负向偏差大,负向偏差中,负向偏差小,无偏差,正向偏差小,正向偏差中,正向偏差大},简记为{NB,NM,NS,ZO,PS,PM,PB},其中E1为低压级压缩机出口压力P1偏差,EC1为P1偏差变化率,U为电磁换向阀的通电时间。选取被控量与控制量的基本论域为e1:[-1,1];ec1:[-0.3,0.3];u1:[-10,10],其中u1为负值表示能量滑阀减载,正值表示增载,E1、EC1、U1的隶属函数根据专家经验确定,模糊推理采用Mamdani合成运算法,反模糊运算采用Centriod法。
1) 压缩机启动和运行时需要不断的吸入氦气,通过补气阀的PID调节使压缩机吸入的氦气压力P0维持在要求的精度之内。
2) 模糊控制+专家控制:当压缩机启动建立压力后,随着制冷机需气量的变化P0、P1、P2会发生变化。在压力偏差较大时,使用设计的两个模糊控制器分别调节低压级压缩机和高压级压缩机的能量滑阀的位置,从根本上使压缩机排出的气量与制冷机的需气量平衡,此过程中为避免由于能量滑阀的动作滞后而导致压力波动太大,根据专家经验分别给定两个旁通阀相应的开度,将能量滑阀来不及转移的气量通过旁通转移,随着能量滑阀的动作旁通阀的开度逐渐减小。
3) PID控制:压力偏差较小(设定一阈值)时,由于滑阀存在机械死区,需要采用旁通调节阀的精细调节来弥补滑阀的机械死区。此时能量滑阀不再动作,而是用旁通调节阀的PID控制P1、P2在要求的精度之内。
4) 当出现异常情况比如核聚变装置失超时,系统的回气量非常大,若能量滑阀和旁通阀动作仍然不能使P2有下降趋势,此时应使用收气阀将回流的氦气收到缓冲罐中。
5.系统软件配置
操作站和工程师站:bbbbbbs 2000操作系统和KingView 5.1,操作站还需:用来设置Controller bbbb网络的数据链接表和监视网络运行情况的OMRON FinsGateWay软件,用来监视ADAN模块运行状态的ADAN。工程师站还需:Omron CX-Programmer 2.0梯形图编程软件。
6.监控系统实现的主要功能
1)显示功能:工艺流程、测量值、设备运行状态、操作模式、报警等显示、画面调用等功能;
2)报警处理和报表生成功能:记录报警发生时间、故障内容等信息,并对报警信息进行管理,系统输出的报表有时报、日报、月报等;
3)历史趋势功能:对现场的氦气压力、液氦高度、氦气温度、阀门开度等以曲线图形显示。每个趋势曲线显示的画面主要包括画面名称、时间、趋势、说明等;
4)数据库存储与访问:实现Access历史数据库在每次系统运行时的自动创建并按分钟级记录,现场数据的存储,;
5)画面系统对系统参数、控制器参数进行修改与储存,能实现监控系统自动/半自动/手动操作模式间的无扰切换;
6)管理权限:实现不同级别的系统管理权限,系统操作员可以选择操作模式,查看趋势曲线及报表等;系统工程师可以根据实际情况对监控软件和下位机软件进行修改。
7.结语
本文研究的基于PLC和组态软件的螺杆压缩机组监控系统利用了PLC抗干扰能力强、组网方便、适用于工业现场的特点,又利用了组态软件强大数据处理和图形表现的能力,融合了较先进的自动化技术、计算机技术、通讯技术、故障诊断技术和软件技术,具有可靠性高、组网简单、维护容易等特点。目前该系统已经成功的在HT-7托卡马克核聚变实验和超导磁体实验中应用,效果良好,对制冷机的运行效率乃至核聚变实验的顺利开展具有重要意义,极大得tigao了自动化水平,降低了工人的劳动强度