西门子6ES7221-1BF22-0XA8规格说明
1 概述
变电所中低压母线的出线数量多,操作频繁,三相导线间距离近,容易受小动物危害,设备的制造质量标准较低,其故障率远高于高压母线及主变。主变及高压母线一般均安装差动保护,其保护范围内的故障能快速切除;而中低压母线则由主变的后备保护动作来切除故障,一则对故障的配电装置产生了极大的破坏,二则使主变的线圈变形进而常使主变损坏,两种恶果在故障后均需长时间才能修复,造成社会的不良影响和巨大的经济损失。如某220kV变电所的10 kV配电装置曾发生两次烧毁及一台31.5 MVA主变因线圈变形严重没有及时修复而烧毁。装设中低压母线保护十分必要,特别是母线短路容量较大的变电所。
2 中低压母线保护的构成
在主变中低压侧、母联开关和各出线原有电磁型继电保护直流电路,利用PLC进行逻辑比较,以判断是保护区内故障还是区外故障,判断为区内故障则瞬时跳主变该侧开关,延时跳主变其它侧开关。
2.1 10 kV母线保护
该变电所的10 kV主接线简图如图1,各出线没有电源,各出线、母联保护采用二相不完全星形的电流速断和过电流保护,主变低压侧设有三相完全星形复合电压过电流保护。利用时间继电器的瞬时闭合触点作PLC的输入接点,PLC输出控制DZ52型中间继电器以跳主变各侧开关。其输入输出接线如图2,PLC梯形图如图3。主变低压侧采用三相完全星形与各出线、母联保护采用二相不完全星形接线,可以防止母线B相与出线的A或C相发生两点接地短路时,因出线保护动作跳闸后,母线长时间单相接地扩大化为母线相间短路。PLC所用的交流电源由在线式的UPS提供。母线保护分两段,Ⅰ段瞬时动作,保护范围为母线至各断路器;Ⅱ段短延时,保护范围为主变断路器至主变10 kV电流互感器(含断路器)。
[NextPage]
2.2 35 kV母线保护
该变电所的35 kV主接线简图与图1相近,有些出线有电源,没有电源的出线、母联保护采用二相不完全星形的电流速断和过电流保护;有电源的出线设有二相不完全星形方向过电流保护;主变35 kV侧设有三相完全星形复合电压方向过电流保护。利用过流或方向过流时间继电器的瞬时闭合触点作PLC的输入接点,其接法及梯形图与图2及图3相似。
3 小结
110 kV及以上的母线因电力系统暂态稳定性的要求,均装设有母线保护。在短路容量较大的35kV及以下的母线,短路故障对主变的冲击很大,很容易造成主变的线圈变形或损坏等扩大性事故,应当高度重视。可编程序控制器PLC的结构简单,利用原有保护时间继电器的剩余触点作间接比较,不需增加各单元的保护设备,投资少,运行灵活,可靠性
在重要的工业生产领域和军用产品设计中,采用冗余技术提高控制系统可靠性的做法越来越普遍。常规的冗余就是采用成倍增加元件的方式来参与控制,以期能够将因控制设备的意外而导致的停机降到少。
燃油锅炉是输油管道加热系统中的加热设备,锅炉的无故障运行是整个输油管道网络正常工作的保证。在锅炉控制系统中,设计采用两组独立运行的西门子PLC软件冗余控制系统,保证加热系统的可靠、连续、安全运行。
冗余常见的方式是中央处理器冗余、I/O 冗余和通讯冗余。中央处理器单元冗余(即一用一备或一用多备),在主处理器单元失效时,备用处理器单元自动投入运行,接管控制。在控制权的交互方式上又可分为硬件冗余和软件冗余两种。硬件冗余是采用硬件方式进行切换,不用编程。除了成对的使用处理器外,还用专用的热备模块,热备模块负责检测处理器,一旦发现主处理器失效,马上将系统控制权交给备用处理器。硬件冗余均采用光纤通讯,通讯速度快,系统稳定,切换时间更短,成本也比较高。软件冗余方式只需要成对的处理器,用软件编程的方式进行处理器的切换,组成比较经济,构成十分灵活,但程序处理需要一定的时间,对于时钟同步及切换时间要求不是十分严格的场合,选用软件冗余方式还是非常经济有效的。
1.控制系统构成:
1.1 监控系统整体设计
本控制方案设计采用了SIMATIC WinCC 组态软件来实现过程控制的上位机组态,WinCC是在生产和过程自动化中解决可视化和控制任务的工业技术系统。下位机控制系统设计采用两套独立的西门子 SIMATIC S7-300系列PLC实现冗余控制,其编程软件STEP-7功能强大,模块化结构,优化了用户程序。
监控系统构成实现如图1:
图1 冗余监控系统
Fig.1 Software redundancy monitoring system
1.2 PLC软件冗余控制系统
软件冗余是Siemens实现冗余功能的一种低成本解决方案,可以应用于对主备系统切换时间要求不高的控制系统中。
1.2.1系统结构
Siemens软件冗余系统的软件、硬件包括:
1套STEP7编程软件(V5.x)加软冗余软件包(V1.x);
2套PLC控制器及I/O模块,可以是S7-300或S7-400系统;
3条通讯链路,主系统与从站通讯链路(PROFIBUS 1)、备用系统与从站通讯链路(PROFIBUS2)、主系统与备用系统的数据同步通讯链路(MPI 或 PROFIBUS 或 Ethernet);
软冗余能够实现:
1. 主机架电源、背板总线等冗余;
2. PLC处理器冗余;
3. PROFIBUS现场总线网络冗余(包括通讯接口、总线接头、总线电缆的冗余);
4. ET200M站的通讯接口模块IM153-2冗余。
软冗余系统由A和B两套PLC控制系统组成。开始时,A系统为主,B系统为备用,当主系统A中的任何一个组件出错,控制任务会自动切换到备用系统B当中执行,这时,B系统为主,A系统为备用,这种切换过程是包括电源、CPU、通讯电缆和IM153接口模块的整体切换。系统运行过程中,没有任何组件出错,操作人员也可以通过设定控制字,实现手动的主备系统切换,这种手动切换过程,对于控制系统的软硬件调整、更换非常有用。
1.2.2 系统工作原理
[NextPage]
在软冗余系统进行工作时,A、B控制系统(处理器,通讯、I/O)独立运行,由主系统的PLC掌握对ET200从站中的I/O控制权。A、B系统中的PLC程序由非冗余用户程序段和冗余用户程序段组成,主系统PLC执行全部的用户程序,备用系统PLC只执行非冗余用户程序段,而跳过冗余用户程序段。下面我们看一下软冗余系统中PLC内部的运行过程(图2):
图2 冗余工作原理
Fig.2 The working principle of software redundancy
1.3 PLC控制系统设计
利用信号采集模块实时采集锅炉的输油管进出口温度和压力,根据设定起炉、转火、停炉温度值控制燃烧机的自动启动、转火、停止等操作。根据温度、压力报警设定值,控制锅炉紧急停炉和故障报警等处理。
[NextPage]
控制系统组成:一组CPU 315-2 DP 处理器(带PROFIBUS-DP接口);2组ET200M模块(各自带2个IM352接口);一组SM321 DI开关量输入模块;一组SM322 DO开关量输出模块;3组SM331 AI模拟量输入模块。一组CP343-1以太网通信处理器模块。
1.4 WinCC与S7-300的通信实现
根据控制方案的设计,采用WinCC组态作为上位机监控,用西门子的S7_300作为下位机执行机构,我将采用以太网的标准Tcp/IP协议实现WinCC与S7-300的通信,将现场的状态参数、控制参数等上传到监控层。这个变量传递的过程可以用图3来说明:
图3 变量监控过程
Fig.3 Course of variable monitoring
1.5 WinCC组态冗余的实现
通过两台独立计算机运行项目功能完全相同的WinCC组态项目,构成并行服务器来实现组态冗余结构,两台服务器通过以太网连接,并与PLC连接。每台服务器都带有其自身的过程连接和可用的数据归档,
[NextPage]
工作PLC站将过程数据和消息发送到两台冗余服务器。如果一台服务器发生故障,另一台将继续接收和归档来自PLC工作站的过程值和消息。出现故障的服务器重新工作后,冗余服务器为故障时间的归档执行同步,通过将丢失的数据重新传送到出故障的服务器,来消除故障引起的归档差别。
冗余服务器的组态实现:1.必须在两个冗余服务器上组态功能完全相同的WinCC组态项目(建议使用WinCC项目复制器)。2. 对于WinCC冗余,需要同步服务器(建议使用设备的时间同步)。3. 配置冗余用户归档,实现用户归档同步。4. 组态在线消息同步。5. 打开冗余编辑器,在“冗余伙伴服务器”项,输入冗余服务器的名称,并在“用户归档”项下,激活“用户归档的同步”。
本系统通过动态向导设置读取IP冗余地址,实现主S7-300数据监控。
1.6 软冗余程序的设计
软冗余程序需要西门子提供的软冗余软件包及STEP7,在A站的Block中插入OB1(主循环程序块)、OB35(定时中断组织块)、OB100(暖启动调用程序块)、OB80(在主系统与备用系统切换时间超时,调用该块)、OB82(DP-Slave ET200站上的IM153-2模块出错报警,调用该功能块)、OB83(DP从站的接口模块与主站链接断开或链接重新建立时调用该块)、OB86(主从站通讯出错调用该块)、OB87(通讯失败调用该块)、OB122(外围设备访问出错调用该块)、OB121等组织块,并对其中的OB100、OB35、OB86进行编程。
用户需要在初始化程序中(OB100)定义冗余部分的数据区,该数据区可以包括:一个过程映像区,一个定时器区,一个计数器区和一个数据块区,S7-300同步的大数据量为8kBytes。本控制系统将每台锅炉的温度、压力采集值和运行状态参数分别放置在不同的DB数据块,并定义为需要冗余的数据块。
使用的是OB35的默认属性,即每100ms中断触发一次,可以根据实际的需要在CPU属性中修改中断的时间间隔。在OB35里调用FB101S ’WR_ZYK’功能块,FB101块中封装了冗余功能的程序段,实现冗余功能。当执行‘SWR_START’程序块时,系统分配这些数据区,不能用S7 的定时器和计数器,只能使用IEC标准的定时器和计数器。
OB35中的程序段也可以在OB1中实现,只是不使用中断的方式,而使用主循环的方式。
调用FB101时,你可以在线地读出RETURN_VAL参数的数值,如果为0,说明冗余链接正常。如果为8015说明数据同步的连接不成功,原因是CP342-5之间的FDL链接建立的不正确或物理链路不通,或者是FC100的VERB_ID参数与NETPRO中的ID号不一致。
2.结束语:
以上简要介绍了SIEMENS软件冗余系统的系统组成、工作原理、程序编制,整个系统组成简单、构成灵活、程序编制比较容易。系统在某输油站投入运行以来,保证了系统无故障停机运行,提高了工作效率,降低了维护费用,以其可靠性、灵活性、便利性受到用户好评
毛巾织机是剑杆织机一种,它和普通剑杆织机的主要区别在于毛巾织机比普通剑杆织机多了一个经轴,即天经!
由于是双经系统故控制就比一般织机的电控系统要复杂。但毛巾织机天经相对来说又有一定的独立性和特殊性,它的独立性对于其它控制部分来说,它们之间只存在张力、纬密、速度、起停的同步;它的特殊性在于在整个运行过程中存在三个张力段、三个纬密,这和地经(普通织机的经轴)有着明显的区别!对此,以往有不同的控制方案:
1、算出当前天经直径和初始直径及初始速度算出当时天经速度:这个方案需要值编码器采样、相应速度快的专控器(单片机)才能支持和完成该算法。这种方案特点是系统性能好,但价格高,国外一般采用。
2、分段控制当前张力:及时采集当前张力信号和设定张力相比,根据差额情况确定加减量多少!这个方案国内有些厂家采用。该方案主要硬件采用单片机+LCD+张力传感器,成本低,但系统实际运行效果不佳,原因在于它的算法比较粗糙、结果实际系统运行天经张力不均匀、有抖动现象。
根据事前充分的调研和在调试过程中的体会,我们控制系统的特点在于:
A、该系统硬件均采用DELTA 自动化产品即 :EH型可编程控制器、ASD-A 型伺服控制器、TP04G文本显示,这样系统维护方便、升级简便。
B、该系统软件算法和以往不一样,它的特点在于:
1)以张力设定值为基准、以张力测量值为参考,通过速度来改变张力。
2)当前速度为初始速度+脉冲增量速度+PID增量速度之和。
3)脉冲速度增量权值和PID速度增量权值不是固定的,在不同的经直经值段是不一样的。
通过如图1所示织物可以看出其主要工艺:
三张力:起毛张力、缎档张力、平纹张力
三过程:起毛、缎档、平纹
三纬密:起毛纬密、缎档纬密、平纹纬密
三、系统构架
硬件构架(TP04+EHPLC+ASD)
A、系统构架图:
图1 硬件结构框图
B、PLC控制接线图:
[NextPage]
图2 PLC接线示意图
C、伺服控制接线图
[NextPage]
图3 伺服接线图
软件构架(TP04+EHPLC):
表1 软件结构图
四、调试
步:电路接线检查并通电
第二步:输入/输出信号测试
第三步:三张力手动测试、上下限张力确定
第四步、工艺参数设定
第五步、伺服参数设定
第六步、手动动作调试
第七步、快车测试、纬密调整(起毛倍数调整)
五、结论
本系统已在山东一家纺机机械厂成功试用,效果很好!该系统结构简单,操作方便,界面友好,它整个系统采用DELTA自动化产品构成,故该系统,市场开发应用前景广阔!本文可供使用DELTA 自动化产品或毛巾织机的相关人员参考。