西门子6ES7223-1BH22-0XA8规格说明
1 引言
计算机及通讯技术已成为工业环境中大部分解决方案的核心部分,其在系统中的比重正在迅速增加。在工业控制中,交流电机的拖动越来越多的采用变频器完成,不仅作为一个单独的执行机构,而是随着不断的智能化,同远程计算机之间可以通过各种通讯方式结合成一个有机的整体。在实际工程实施时,变频器的启动、停止、方向、告警、故障指示以及故障复位等控制通常为端子排开关信号控制方式,速度控制采用模拟量给定值控制方式来完成。由于变频器的输出端会产生强烈的干扰信号,控制器有时会造成误动作的情况。当控制距离遥远时,还存在敷线工程量过大的问题。随着现场总线的底层控制网络的发展,变频器生产厂家推出了具有数据通信功能的产品,采用RS-485通信接口用于系统配置和监控是一种低成本的连接方案。
2 西门子变频器的USS控制协议
2.1 USS协议的特点
USS是西门子公司为变频器开发的通信协议,可以支持变频器同PC或PLC之间建立通信连接,常适合于规模较小的自动化系统。它以主从方式构成工业监控网站,在网络内有一个主站,1~31个从站,各站点有唯一的标识码识别。
这种结构的特点是:用单一的、完全集成的系统来解决自动化问题。所有的西门子变频器都可以采用USS协议作为通信链路。数字化的信息传递,提高了系统的自动化水平及运行的可靠性,解决了模拟信号传输所引起的干扰及漂移问题。通信介质采用RS-485屏蔽双绞线,远可达1000m,可有效地减少电缆的数量,从而可以大大减少开发和工程费用,并极大地降低客户的启动和维护成本;通信效率较高,可达187.5kbit/s。对于有10个调速器,每个调速器有6个过程数据需刷新的系统,PLC的典型扫描周期为几百毫秒,采用与PROFIBUS相似的操作模式,总线结构为单位站、主从存取方式,报文结构具有参数数据与过程数据,前者用于改变调速器的参数,后者用于快速刷新调速器的过程数据,如启动停止、速度给定、力矩给定等。具有极高的快速性和可靠性。利用西门子变频器的主机上提供的USS接口,仅在终端机中插入一RS-485通信板,就可实现变频器的全部远程控制。
2.2 USS协议的通信数据格式
USS协议的通信字符格式为一位起始位、一位停止位、一位偶校验位和八位数据位。数据报文大长度位256个字节,包括3字节的头部、1字节的校验码和主数据块,数据块按照字的方式组织,高字节在前。通信数据报文格式如表1所示。
表1 USS协议的通信数据报文格式
表中:STX—起始字符,为02Hex;LGE—报文长度,为n+2,3≤n≤254;ADR—从站地址码,其中bit0~bit4表示从站地址,bit5为1表示广播发送,bit6为1表示镜像发送,用于网络测试,bit7为1表示特殊报文;BCC—校验字符,为从STX开始所有字节的异或和。
在一帧内完成过程控制数据的可以通过指定参数号完成设备控制参数的读写。数据快由参数值域(PKW)和过程数据域(PZD)组成,二者均为变长数据,其格式如表2所示。
表2 数据快的格式
表中:PKW域—参数值域,由参数识别码、子参数号和参数值构成,参数个数可根据设备的定义值大可有124个字;PZD域—过程控制数据域,包括控制字/状态字,设定值/实际值,多16个字;PKE参数识别码;IND用来指定某些数组型设备参数的子参数号。
对于SIEMENS的MMV/MDV变频器,协议有所简化:
IND固定为0;PKW为3字格式,即只有PWE1;PZD域的PZD1是控制字/状态字,用来设置和监测变频器的工作状态;PZD域的PZD2设定频率。
3 PLC控制变频器的程序设计
PLC通讯程序采用子程序方式编制,主控程序对变频器的控制通过调用有关子程序发送命令完成。数据接受由后台中断程序完成。发送命令子程序将变频器目标速度值和命令参数加工为USS协议格式,发送出去,并设置发送标志,复位接受完成标志,并开允许接受中断和定时中断。
当变频器发送响应报文时,激活后台中断程序接受变频器的状态值和当前速度值,存入接受缓冲区,并复位发送标志,设置接受完成标志。
3.1 主控程序
按照采样时间间隔,主控程序根据发送标志和接受完成标志,检查变频器接受缓冲区内容,并进行相应的处理。通讯程序由通信口初始化、运行、停止、速度设定等5个子程序和一系列中断服务子程序构成,主控程序的流程如图1所示。
1 引言
可编程序控制器(Programmable LogicController)简称为PLC,它具有可靠性高、抗干扰能力强等突出优点,广泛应用于工业控制领域,已经成为现代工业自动化的主要支柱之一。在PLC控制系统的设计中,经常会遇到I/O点资源紧张以及性价比矛盾的问题。有些被控设备需要具有手动、自动的工作方式,且手动部分控制按钮较多;有些自动生产线中,进行位置检测的行程开关或者用于系统工作状态指示的输出比较多,都会使占用的I/O点大为增加。一般通过增加扩展模块来解决,但PLC的I/O点价格昂贵,且还有扩展模块数目和I/O点数目的限制,如SIEMENS的CPU226大扩展模块数目为7,大扩展168路数字量I/O点或35路模拟量I/O点。若此时再增加CPU,势必使得系统性价比大为降低,在这种情况下,扩展I/O点数具有较大的实际意义。本文以SIEMENS的S7-200PLC为例,探讨如何扩展PLC控制系统中I/O点数的方法。
2 硬件电路I/O点扩展方法
2.1 分时分组输入
对于既有手动方式又有自动方式,而二者不可能执行的PLC工作方式,不同工作方式的输入可以共用一个PLC的输入点。分时分组输入扩展I/O点数接线图如图l所示。I1.0用来输入自动/手动命令信号,供自动和手动程序切换用;二极管用来切断寄生电路,避免错误信号的产生;SA用来切换自动和手动操作方式。
图1 分时分组输入接线图
2.2 共用输出触点
对于通断状态完全相同的负载,在输出点功率允许的情况下,可以并联于同一输出点上,即用一个输出点带动多个负载,需特别注意的是不能超出每个输出点的允许负载能力。接线方式如图2所示。
图2 共用输出点接线图
2.3 合并输入触点
对于一个由如图3所示的按钮和接触器实现的电动机多点起动、停止的控制要求,例如可在三处实现启动和停止,其中,SB1、SB2、SB3为起动按钮,SB11、SB12、SB13为停止按钮。可以将每个按钮接PLC的一个输入点,很容易便可实现。若PLC的输入点较为紧张,则可以用图4所示的方式接线,与每个按钮占用一个输入点的方式相比,该方法的软件编程更为简单。
图3 电动机电气控制原理图
图4 电动机PLC控制接线图
3 软件编程I/O点扩展方法
软件扩展的基本思想是一点两用或轮序复用。即当按钮初次按下时,输出要求为高;当按钮按下时,输出要求为低;再按下时又为高,依此类推。这样就可以节省一个输入点,当系统有较多开关量控制时可节省较多输入点,如主机ON和主机OFF,纸料座上和纸料座下,都可以只用一个输入点来控制。实现“一点两用”的编程方法较多,如利用内部辅助继电器、定时器、计数器、移位指令等,本文仅介绍几种简便方法。
3.1 利用边沿检测、输出指令
若按钮SB连到I0.0上,输出控制Q0.0,利用边沿检测和输出指令实现“一点两用”,用STEP7V5.3编制的STL程序如下。
A I0.0
FP M0.0
= M0.1
A M0.1
A Q0.0
= M0.2
A(
O M0.1
O Q0.0
)
AN M0.2
= Q0.0
程序说明:当第1次按下按钮SB时,I0.0的常开触点闭合,在RLO边沿检测指令FP的作用下,辅助继电器M0.1接通一个扫描周期,从而输出继电器Q0.0的线圈得电,且Q0.0构成自锁(保持)电路,Q0.0另一对常开触点闭合,为M0.2接通做准备;当第2次按下按钮SB时,在FP指令的作用下,M0.1的常开触点接通M0.2的线圈回路,M0.2的常闭触点切断了PLC的输出,从而实现一点两用。
3.2 利用边沿检测、跳转指令
若利用边沿检测和跳转指令,实现起来较为简便,其STL程序如下。
A I0.0
FP M0.0
JNB OUT
AN Q0.0
= Q0.0
OUT: NOP0
程序说明:第4、5个语句的功能是实现Q0.0的自取反,但若没有前面的跳转指令,则程序每个扫描周期都会将Q0.0的状态取反一次;第1、2句的作用是限定只有当I0.0的上升沿到时取反一次,否则跳出取反程序段,从而实现一点两用。
3.3 利用边沿检测、异或指令
若利用边沿检测和异或指令实现起来更为简便,程序如下。
A I 0.0
FP M0.0
X Q0.0
= Q0.0
程序说明:当第1次检测到I0.0的上升沿,此时Q0.0为0,异或后输出Q0.0为1,第2个扫描周期来时,已经不是I0.0的上升沿了,为0,此时Q0.0确为1,异或后保持结果仍为1;第2次检测到上升沿时,Q0.0为1,异或后输出Q0.0的结果为0,等到下一个扫描周期到时,已经不是上升沿了,而此时Q0.0还是为0,异或保持输出仍为0。
[NextPage]
4 硬件和软件结合I/O点扩展方法
4.1 硬件编码和软件译码,扩展输入点
在控制系统输入信号较多的情况下,可以利用编码器对输入信号编码,引到PLC的输入端,再通过PLC内部程序配合进行译码,对各个输入信号加以识别,可以大大减少对输入点的占用。PLC的外部接线如图5所示。由于普通编码器在有多个信号输入时会出现乱码,故可采用8线-3线优先编码器74LS148,设定好信号的优先权,有时还要将编码器的选通输出端和扩展端也接入PLC中,配合程序减少误判断。还要注意的是电平的匹配问题(信号电路的+5V和PLC的+24V之间)以及PLC的输入口对信号识别所要求的技术规范(驱动电流和电压能识别的范围),有时还需增加适当的信号放大和隔离电路。
图5 硬件编码接线图
下面以按钮SB2按下为例,说明PLC内部软件译码的程序识别方法。由74LS148的功能表可知,该芯片低电平有效,图5中用3个非门将输出电平转换成正逻辑。若SB2按下,无论SB0和SB1是否按下,但SB3~SB7均未按下;此时,ABC的输出为101,经过非门后I0.0,I0.1,I0.2的状态分别为0,1,0;对应的STL译码程序如下。
LDN I0.0
A I0.1
AN I0.2
= M0.2
这样,笔者在程序里用M0.2的常开触点代替了按钮SB2。即当按钮SB2按下,M0.2为1;SB2弹起,M0.2又为0,从而实现了软件译码的功能。需要指出,该方法在PLC的每一个扫描周期只能读入8个输入中的一个输入状态,若有2个以上开关闭合,PLC只能检测出优先权高的那个信号。
4.2 软件编码和硬件译码,扩展输出点
在控制系统输出信号较多的情况下,可以通过PLC的内部程序对输出信号进行编码,通过硬件译码器
[NextPage]
进行译码,驱动负载工作,这可以大大的减少对输出点的占用。PLC的外部接线如图6所示,采用3线-8线译码器74LS138。此时,同样存在电平匹配的问题,即PLC的直流模块典型输出为+24V,而信号电路的工作电压一般为+5V,有时同样需要增加信号电路以及功率放大电路以驱动负载工作。
图6 PLC接线图
下面以如何让Q2为1为例,说明PLC内部软件的编码方法。由74LS138的功能表可知,若要使输出Q2为1,应该使Y2输出为0;即对应的ABC应该为010,从而得到只要让PLC的Q0.0,Q0.1,Q0.2分别为0,1,0即可;对应的STL编码程序如下,其中M1.2为置位输出Q2的条件。
LD M1.2
S Q0.0, 1
R Q0.1, 1
S Q0.2, 1
这样,只需对Q0.0,Q0.1,Q0.2进行组合就可以实现对输出Q0~Q7分别置为1。本方法存在一个明显的缺点,即每一个扫描周期只能输出八种状态中的一种,若要置位输出Q0和Q1是不能实现的。
4.3 用N个输入点识别N×(N+1)/2个输入信号
若我们将输入信号接成图7的形式,再配合以软件编程便可以实现用3个输入点识别3×(3+1)/2=6个输入信号。其基本思想是:当SB1按下时,PLC只检测到了I0.0为“1”,此时I0.1和I0.2的状态均为“0”,那么在程序里就将I0.0的常开触点和I0.1、I0.2的常闭触点相与来识别SB1的状态;若SB2按下时,I0.0和I0.1均为“1”,I0.2为“0”,此时识别程序应该为I0.0和I0.1的常开触点与上I0.2的常闭触点;其它点的情况类似,输入信号SB1和SB2的STL识别程序如下,其中,M2.1、M2.2的状态就代表了信号SB1、SB2的状态。
LD I0.0
AN I0.1
AN I0.2
= M2.1
//信号SB1的识别
LDN I0.0
A I0.1
A I0.2
= M2.2
//信号SB2的识别
需要指出:这种方法不能识别2个及2个以上的信号为1的情况,如SB1和SB3接通,程序会把它当成SB2接通的情况识别。图7中二极管的作用是为了隔断寄生电流形成通路。其实,用3个输入点多可以7个信号的识别,如果在图7中再加一个SB7,用3个二极管连到I0.0、I0.1、I0.2上,则可以通过将3个点的常开触点相与来识别SB7,但这样过于繁琐,一般不采用。
图7 硬件接线图
4.4 用输入/输出口组成矩阵式键盘
若控制系统需要设计键盘,常规的思路是每个按键接一个输入口。当键数增加时,极为浪费输入点,仿照微机系统中制作矩阵式键盘的思路,在PLC系统中利用I/O点组成矩阵式键盘,如图8所示为3×3键盘结构图。编程思路:判断整个键盘上有无键按下,方法是将行全输出为1,读入列的状态,如果列读入的状态全为0,则无键按下,不全为0则有键按下;逐列扫描,方法是依次将行线送1,检查对应列线的状态,若列线全为0,则按键不在此行;若不全为0,则按键必在此行,且是与1电平列线相交的那个键。对应的软件编程比较复杂,在有些小型的控制系统中可以避免增加操作屏或触摸屏,从而提高系统性价比。若需要详细的硬件设计图和软件程序可与作者联系。
图8 3×3键盘结构图
5 结束语
本文从硬件设计、软件编程以及硬件软件结合三个方面探讨了扩展PLCI/O点的方法。在具体应用时,还需考虑每种扩展方法的一些优缺点以及抗干扰能力等问题。若能合理的利用这些方法,必能有效的节省PLC的I/O点数,降低系统成本,提供性价比,更为充分的发挥PLC的优势。