西门子模块6ES7221-1EF22-0XA0规格说明
在可编程程序控制器控制系统中遇到的的直流有源输入信号,一般都是5V、12V、24V、48V等。而目前的PLC输入模块输入点的响应电压范围是3~120V之间,这类信号不必做转换处理,直接和PLC输入模块输入点连接,但和其他无源开关量信号以及其他来源得直流电压信号混合接入PLC输入点时一定注意电压的0V点一定要连接。
图1
如图1所示,输入点I0.0、I0.1连接光电编码器、接近开关的输出信号(OUT),它们的驱动电源由PLC自身的24V提供,它们OUT端子输出信号是有源信号,在和两个无源开关量信号I0.2、I0.3混合连接,PLC的M端子与PLC的0V端子以及光电编码器、接近开关的0V信号连接在一起,PLC的输入点的响应电压电位差都是以一个共同参考点为基点。
在图1中,光电编码器和接近开关的直流供电是由PLC自身24V电源提供,这是可编程序控制器控制系统中经常的设计方法,这种方法使系统简单,成本低。但在有些情况,比如PLC的直流电源的容量无法支持过多的负载或者外部检测设备的电源不能使用24V电源,而必须5V、12V等。在这种情况下,就必须设计外部电源为这些设备提供电源,这些设备输出的信号电压不同,如图2所示。
在图2中,光电编码器的电源是12V,为它设计配备了12V的直流电源,接近开关的电源是5V,为它设计配备了5V的直流电源。它们OUT的输出信号分别是12V和5V的脉冲信号。在图中有两个无源开关量的输入信号。
不同电压的直流信号可以PLC输入模块输入点连接,但必须注意的是信号电位差的参考点必须共同。在图2中,光电编码器、接近开关、无源开关量的0V信号必须连接在一起,否则,会出现PLC输入点的响应电压混乱,造成有的输入点的电压过高,可以触发输入点,但有可能过高得电压而烧毁输入点。而有的输入点的电压过低,而无法触发输入点。这在可编程序控制器控制系统中是特别注意的。
随着PLC技术的发展,PLC产品的种类也越来越多。不同型号的PLC,其结构形式、性能、容量、指令系统、编程方式、价格等也各有不同,适用的场合也各有侧重。合理选用PLC,对于提高PLC控制系统的技术经济指标有着重要意义。
PLC的选择主要应从PLC的机型、容量、I/O模块、电源模块、特殊功能模块、通信联网能力等方面加以综合考虑。
PLC机型的选择
PLC机型选择的基本原则是在满足功能要求及保证可靠、维护方便的前提下,力争佳的性能价格比。选择时主要考虑以下几点:
(一) 合理的结构型式
PLC主要有整体式和模块式两种结构型式。
整体式PLC的每一个I/O点的平均价格比模块式的便宜,且体积相对较小,一般用于系统工艺过程较为固定的小型控制系持校欢?槭絇LC的功能扩展灵活方便,在I/O点数、输入点数与输出点数的比例、I/O模块的种类等方面选择余地大,且维修方便,一般于较复杂的控制系统。
(二) 安装方式的选择
PLC系统的安装方式分为集中式、远程I/O式以及多台PLC联网的分布式。
集中式不需要设置驱动远程I/O硬件,系统反应快、成本低;远程I/O式适用于大型系统,系统的装置分布范围很广,远程I/O可以分散安装在现场装置附近,连线短,但需要增设驱动器和远程I/O电源;多台PLC联网的分布式适用于多台设备分别独立控制,又要相互联系的场合,可以选用小型PLC,但必须要附加通讯模块。
(三)相应的功能要求
一般小型(低档)PLC具有逻辑运算、定时、计数等功能,对于只需要开关量控制的设备都可满足。
对于以开关量控制为主,带少量模拟量控制的系统,可选用能带A/D和D/A转换单元,具有加减算术运算、数据传送功能的增强型低档PLC。
对于控制较复杂,要求实现PID运算、闭环控制、通信联网等功能,可视控制规模大小及复杂程度,选用中档或PLC。中、PLC价格较贵,一般用于大规模过程控制和集散控制系统等场合。
(四)响应速度要求
PLC是为工业自动化设计的通用控制器,不同档次PLC的响应速度一般都能满足其应用范围内的需要。如果要跨范围使用PLC,或者某些功能或信号有特殊的速度要求时,则应该慎重考虑PLC的响应速度,可选用具有高速I/O处理功能的PLC,或选用具有快速响应模块和中断输入模块的PLC等。
(五)系统可靠性的要求
对于一般系统PLC的可靠性均能满足。对可靠性要求很高的系统,应考虑是否采用冗余系统或热备用系统。
(六)机型尽量统一
一个企业,应尽量做到PLC的机型统一。主要考虑到以下三方面问题:
1)机型统一,其模块可互为备用,便于备品备件的采购和管理。
2)机型统一,其功能和使用方法类似,有利于技术力量的培训和技术水平的提高。
3)机型统一,其外部设备通用,资源可共享,易于联网通信,配上位计算机后易于形成一个多级分布式控制系统。
1 引言
随着海洋石油勘探开发事业的发展,开发海域逐渐由浅海向深海延伸,导管架、海上平台也向着高、大、重的方向发展。海上作业所需的水泥浆量也越来越大,对水泥浆质量的要求也在不断提高。采用PLC对水泥浆生产过程进行控制,实现生产全过程的自动化,能够提高生产效率、降低生产成本和工人的劳动强度。
灌浆机是高度自动化设备,包括水泥、水、添加剂等按照一定的配比自动进料,搅拌,灌浆等几部分。搅拌好的水泥浆储存在搅拌器中,搅拌器的双层叶片不停的搅拌,防止在灌浆过程中水泥浆凝固,泥浆泵把搅拌器中的水泥浆压出灌浆机。系统的工艺流程如图l。
图1 系统工艺流程图
2 系统控制方案
水泥灌浆机自动控制系统由可编程控制器(西门子S7-300)、人机界面(HMI,西门子TP27-10)、料位传感器和称重传感器等几部分组成。控制系统框图见图2。
图2 系统控制框图
控制核心是西门子的S7-312CPU和数字量输入模块、模拟量输入模块以及数字量输出模块组成,并配有EEPROM存储卡使PLC程序可以掉电保护。完成开关量、模拟量输入、数据检测、逻辑运算和过程控制,实现水泥浆生产过程自动控制。所有的设备输入输出信号直接进入PLC,由PLC来进行控制。
2.1 控制内容
(1) 输入部分
l 四个水泥料位传感器;
l 混炼器排除阀的行程开关;
l 手动、自动操作切换开关;
l 9个电机的手动启动和停止按钮;
l 三套称重传感器输出信号4~20mA;
l 电极测量传感器输出信号(水罐、添加剂罐、搅拌器高低各两个);
[NextPage]
l 测灯按钮;
l 其它输入信号等。
(2) 输出部分
l 9个电机的启动和停止指示灯;
l 9个电机的输出控制信号;
l 三个料斗的入料电磁阀,双动控制;
l 三个料斗的出料电磁阀;
l 添加剂排料槽控制;
l 混炼器的出料气动闸阀控制;
l 报警指示、警铃信号;
l 空气吹扫电磁阀;
l 水泥料斗振动器;
l 其它输出信号等。
2.2 人机界面
人机界面用带有RS-485通讯接口的西门子TP27-10触摸屏。HMI程序由运行监控、操作界面、参数设定、物料管理、及各种统计报表打印等模块组成。采用全部汉化用户界面。具有界面友好、操作简单、功能强大等特点。其中HMI主界面见图3。
图3 HMI主界面
通过运行监控界面用户可以在触摸屏屏幕上直观的看到现场的生产运行情况。把电器柜所有转换开关置为PLC,系统得电后,在界面上选择PLC自动,通过点击屏幕上的“启动”按纽来启动系统,进入自动运行。屏幕上将动态显示各料斗中的配料量和其他设备如:混炼器、搅拌器、电机、各阀门的运行情况。
(1) 操作界面:当选择PLC手动时,就可以在操作界面对系统中的各个设备进行单独控制,在检测、调试和紧急情况下使用。
(2) 参数设定:参数设定界面主要目的是方便对系统运行过程的一些重要参数进行修改。包括配料参数的设定,搅拌参数设定等。
(3) 物料管理:管理物料进料和进行物料用量统计。
(4) 统计报表打印:方便用户对运行过程中的归档数据,如生产记录、配料详细记录和物料消耗情况进行打印输出。
我们还充分利用西门子软件灵活多样、丰富的指令,设计出了模块化、结构化的程序,使得程序具有良好的可
[NextPage] 读性、可维护性。
3 物料传送控制
传动部分包括水平螺旋传送、垂直螺旋传送、缓冲罐、计量斗、混炼器、搅拌器和泥浆泵等组成。系统运行以后,水平螺旋和垂直螺旋将水泥传送到水泥缓冲罐,水泵将外界淡水送到水缓冲罐,添加剂泵将各种添加剂传送到添加剂缓冲罐。PLC采集称重传感器数据,控制各缓冲罐出口阀做相应的动作。各计量斗秤值重量达到预先设定值,计量斗出口阀打开,在混炼器搅拌45s以后,打开浆液阀,泥浆进入搅拌器。通过泥浆泵将泥浆输送到外界供现场使用。
为了使水泥在混炼器中搅拌均匀,减少灰尘,程序中设定水计量斗中的淡水排放完毕,打开水泥计量斗出口阀门。因为水泥是粉尘状颗粒,容易黏附在一起,在水泥计量斗侧壁安装有振动器。
4 物料称重配料控制
该部份由称重传感器、电磁阀、料位传感器、行程开关等组成。输入量模块采集现场信号,传送到CPU模块进行计算处理,通过输出模块输出信号,控制现场各种开关、电磁阀和电机等。
根据原料配比不同,添加剂称重传感器大量程150kg,水称重传感器量程3t,水泥称重传感器量程6t。称重传感器将配料重量转换成(4~20)mA的电流信号,经PLC的模拟量输入模块进行A/D转换后输送到CPU与预先给定的重量进行比较,CPU按照给定的控制规律进行计算,发出控制信号控制各种配料严格按比例送入混炼器中搅拌。
在称重配料的过程中,机械装置运行时的波动,比如气动电磁阀气缸的压力波动,造成给料装置的动作滞后:物料下落的冲击力;配料系统发出关闭信号后原料的过冲量(空中余量),因物料料流的不稳定导致过冲量的随机变化(为关键的因素)。这些因素造成了称重配料误差。
为了减小称重配料误差,系统把称重过程分为粗称和精称两个阶段。在缓冲罐出口安装两个气缸串联。在粗称阶段,缓冲罐出口的两个气缸全部打开,缩短给料时间。当给料量达到设定量的90%,进入精称阶段,此时,关闭90%的缓冲罐出口气缸,小量给料以提高称量精度。系统中的机械结构、称重传感器、模拟量输入模块等环节都存在一定的误差,终反映为作用于传感器的实际值与触摸屏显示值之间的误差,这个差值我们称之为系统的非线性误差。这一误差可以通过函数校正的方式来消除。假设作用传感器的力为F(i),对应的显示值为M(i),由数组F(i)和M(i)的拟合,可以得到一个校正函数:F=f(m)
由于系统误差是各个环节共同作用的结果,校正函数一般有多个拐点,为了保证测量精度,本系统中采用分段小二乘抛物线法来分别求出各段的拟合多项式:F=a+bm+cm2
5 结束语
该系统采用可靠性高、抗干扰能力强的可编程控制器和触摸屏,可以实现PLC自动/手动和手动三种配料功能。当自动系统有故障时,可切换至手动方式配料,继续生产水泥浆,保证用户生产的连续性,减少损失。触摸屏编程为图形化操作,可以动态显示当前配、卸料等生产状态,简单直观,操作方便。可以存储实时生产数据,读取历史数据,实现生产数据打印。二次计量进料方法,使整个自动化搅拌系统精度得到了提高。水泥搅拌自动控制系统的研制成功改变了以前依靠进口设备的状况,大大降低了生产费用、提高了生产效率和系统的可靠性。
在控制系统中,使用PLC的模拟量控制多台变频器,由于变频器本身产生强干扰信号的特性和模拟量抗干扰能力不与数字量抗干扰能力强的特性;为了大程度的消除变频器对模拟量的干扰,在布线和接地等方面就需要采取更加严密的措施。
一.关于布线
1.信号线与动力线必须分开走线
使用模拟量信号进行远程控制变频器时,为了减少模拟量受来自变频器和其它设备的干扰,请将控制变频器的信号线与强电回路(主回路及顺控回路)分开走线。距离应在30cm以上。在控制柜内,同样要保持这样的接线规范。该信号与变频器之间的控制回路线长不得超过50m。
2.信号线与动力线必须分别放置在不同的金属管道或者金属软管内部
由于水系统的两台富士变频器离控制柜较远分别为30m和20m,连接PLC和变频器的信号线如果不放置在金属管道内,极易受到变频器和外部设备的干扰;由于变频器无内置的电抗器,变频器的输入和输出级动力线对外部会产生极强的干扰,放置信号线的金属管或金属软管一直要延伸到变频器的控制端子处,以保证信号线与动力线的彻底分开。
3.模拟量控制信号线应使用双股绞合屏蔽线,电线规格为0.5~2mm2。在接线时一定
要注意,电缆剥线要尽可能的短(5-7mm左右),对剥线以后的屏蔽层要用绝缘胶布包起来,以防止屏蔽线与其它设备接触引入干扰。
4.为了提高接线的简易性和可靠性,推荐信号线上使用压线棒端子。压接端子选择如下图:
5.如无使用压线端子,接线时请注意:
二.关于接地
1.变频器的接地应该与PLC控制回路单独接地,在不能够保证单独接地的情况下,为了减少变频器对控制器的干扰,控制回路接地可以浮空,但变频器一定要保证可靠接地。在控制系统中建议将模拟量信号线的屏蔽线两端都浮空,由于在机组上PLC与变频器共用一个大地,建议在可能的情况下,将PLC单独接地或者将PLC与机组地绝缘开来。
2.变频器的接地
•400V级:C种接地(接地电阻10Ω以下)。
•接地线切勿与焊机及动力设备共用。
•接地线请按照电气设备技术基准所规定的导线线径规格。
如35KW的变频器接地线线径推荐为22 mm2,87KW的接地线线径推荐为50 mm2。
•接地线在可能范围内尽量短。由于变频器产生漏电流,与接地点距离太远则接地端子的电位不安定。
•使用两台以上变频器的场合,请勿将接地线形成回路。如图:
3.变频器与电机间的接线距离。
变频器与电机间的接线距离较长的场合,来自电缆的高次谐波漏电流,会对变频器和周边设备产生不利影响。为减少变频器的干扰,需要对变频器的载波频率进行调整,请参考下表: