西门子模块6ES7223-1PH22-0XA8规格说明
1引言
目前,使用中的北京地铁人防控制设备如:车站人防集中控制台、电动液压人防区间隔断门原地控制台、车站及区间通风道电动人防门控制柜等所采用的元件都是传统的常规开关、中间继电器、时间继电器、闪烁继电器、报警器、直流稳压电源等。其突出的缺点是:技术落后、元件体积大、易损坏、接线复杂、工作不稳定、故障率高、检修不便,由其组成的设备体积较大,需为其准备空间较大的地下控制室,从而使得土建成本较高。
而目前北京地铁车站的新建速度非常快,已有地铁四号线、五号线等几十个地铁站的土建工程开始动工。随着我国新一轮城市基础设施大规凝设高潮的到来,全国城市地下铁道建设呈高速增长之势。其地下铁道中的新人防设备的安装与已有人防设备的改造量都比较大。本文探讨PLC在地铁人防领域中的应用,拟以技术先进的PLC代替原地铁人防控制设备中使用的传统的继电接触器控制系统,克服其存在的缺点,提高我国地铁人防控制设备的技术含量。
2 PLC简介
1969年,美国数字设备公司(DEC)研制出世界上台可编程序控制器,简称PLC,并成功地应用于汽车生产线上,实现了生产的自动控制。之后,PLC作为控制领域的新技术发展迅速,产品体积越来越小,功能越来越完善,产品更新换代频繁,新产品不断出现。并成为控制领域中常见、重要的核心装置之一,砌叻地应用到了工业控制的各个领域。
PLC的主要特点:PLC的软件简单易学。它采用易学易懂的以继电器梯形图为基础的编程语言,而梯形图控制符号的定义与常规继电器的展开图完全一致,电气操作人员使用起来得心应手,不存在计算机技术与传统电气控制技术之间的鸿沟。PLC使用简便。在PLC构成的控制系统中,PLC的输入接口可与触点式开关直接相接,输出接口与执行元件相接,即只需在PLC的端子上接人相应的输入、输出信号线即可,使用非常方便;当控制要求改变,需要变更控制系统的功能时,可以通过编制修改程序实现;PLC的输入、输出可直接与交流220v、直流24v等强电相接,并有较强的带负载能力(负载电流一般可达2A)。PLC抗干扰能力强、运行稳定可*。PLC是专为工业控制设计的,在设计和制造过程中,采取了多层次的屏蔽、隔离、滤波、电源调整与保护等抗干扰措施,可在恶劣的工业环境下与强电设备一起工作,运行的稳定性和可*性较高。继电接触器控制有较好的抗干扰能力,但继电器触点在开闭时会受到电弧的损坏,寿命短。在较恶劣的环境下,灰尘等落人继电器内,将影响继电器铁芯的闭合,严重时.将烧毁继电器;而PLC是以集成电路为基本元件的电子设备,其内部继电g-lg无触点型。元件的寿命几乎不用考虑,目前,PLC整机平均无故障工作时间一般可达2—5万h。PLC体积小,接线少,维护方便。
3 用PLC替代传统的地铁人防控制系统设备分析
PLC内部有足够多的电子式继电器、定时器、计数器.通过程序控制.完全可以取代原控制系统中的中间继电器、时间继电器、闪烁继电器等元件;而其24V直流电源输出端子可代替原直流稳压电源向系统提供直流电压。PLC的输出端子可直接控制系统中的交直接触器线圈、电磁阀、报警器、停车信号灯等,进而控制系统的工作。由于PLC体积小、重量轻、接线少.用其取代原继电接触器控制系统中的元件后,可节省较大的元器件安装空间,使控制台体积大大缩小.从而减小地下控制室的空间,节省昂贵的土建开支。使用PLC后,还可减少大量的接线工作.并使系统调试工作简单化。还可以较大地提高系统工作的稳定性及设备的使用寿命。地铁人防控制系统中的各种指令控制信号和反馈信号都是开关型信号,数量不多。可选用开关量的小型PLC产品:目前.开关量的小型PLC产品价格非常便宜,使用PLC产品还可以降低设备的制造成本。
4 结束语
.可编程序控制器无论在技术性能方面、经济效益方面,还是设备的工作可*性、稳定性及使用寿命等多方面均优越于继电器逻辑控制。采用PLC取代原地铁人防控制系统中的继电接触器控制.必将大大改善地铁人防控制设备的质量和自动化的程度,使我国地铁人防控制设备的技术含量大大提高;并能节省建设投资.创造可观的经济效益。
1机械手工作原理
1.1机械手动作原理及示意图
机械手动作示意图如图1所示。其全部动作由汽缸驱动,而汽缸又由相应的电磁阀控制。其中,上升/下降和左移/右移分别由双线圈两位电磁阀控制。下降电磁阀通电时,机械手下降;下降电磁阀断电时,机械手下降停止。只有上升电磁阀通电时,机械手才上升;上升电磁阀断电时,机械手上升停止。同样,左移/右移分别由左移电磁阀和右移电磁阀控制。机械手的放松/夹紧由一个单线圈(称为夹紧电磁阀)控制。该线圈通电,机械手夹紧;该线圈断电,机械手放松。
当机械手右移到位并准备下降时,为确保安全,必须在右工作台上无工作时才允许机械手下降。也就是说,若上一次搬运到右工作台上的工件尚未搬走时,机械手自动停止下降。
图1机械手动作示意图
1.2机械手动作过程
机械手的动作过程如图2所示。从原点开始按下启动按钮时,下降电磁阀通电,机械手开始下降。下降到底时,碰到下限位开关,下降电磁阀断电,下降停止;接通夹紧电磁阀,机械手夹紧,夹紧后,上升电磁阀开始通电,机械手上升;上升到顶时,碰到上限位开关,上升电磁阀断电,上升停止;接通右移电磁阀,机械手右移,右移到位时,碰到右移极限位开关,右移电磁阀断电,右移停止。此时,右工作台上无工作,则光电开关接通,下降电磁阀接通,机械手下降。下降到底时碰到下限位开关下降电磁阀断电,下降停止;夹紧电磁阀断电,机械手放松,放松后,上升电磁阀通电,机械手上升,上升到极限时碰到极限位开关,上升电磁阀断电,上升停止;接通左移电磁阀,机械手左移;左移到原点时,碰到左极限开关,左移电磁阀断电,左移停止。至此,机械手经过八步动作完成一个循环。
图2机械手动作过程
1.3机械手操作方式
机械手的操作方式分为手动操作方式和自动操作方式。自动操作方式又分为单步、单周期和连续操作方式。
手动操作:就是用按钮操作,对机械手的每一种运动单独进行控制。例如:当选择上/下运动时,按下启动按钮,机械上升;按下停止按钮,机械手下降。当选择左/右运动时,按下启动按钮,机械手左移;按下停止按钮,机械手右移。当选择夹紧/放松运动时,按下启动按钮,机械手夹紧;按下停止按钮,机械手放松。
单步操作:每按一下启动按钮,机械手完成一步动作后自动停止。
单周期操作:机械手从原点开始,按下启动按钮,机械手自动完成一个周期的动作后停止。在工作中若按一下停止按钮,则机械手动作停止。重新启动时需用手动操作方式将机械手移回到原点,按一下启动按钮,机械手又开始重新单周期操作。
连续操作:机械手从原点开始,按一下启动按钮,机械手将自动地、连续地周期性循环。在工作中若按一下停止按钮,则机械手停止工作。重新启动时,必须用手动操作将机械手移回到原点,按下启动按钮,机械手又开始重新连续工作。在工作中若按下复位按钮,则机械手将继续完成一个周期的动作后,回到原点自动停止。
2用户所需输入/输出设备的确定
2.1输入设备——用于产生输入控制信号
本设计中输入设备应包括以下几种:①操作方式转换开关,该开关应有手动、单步、单周期、连续等四个位置可供选择。②手动时的运动选择开关。该开关应有上/下、左/右、夹紧/放松三个位置可供选择。③启动、停止及复位按钮。开关及按钮在操作屏上的布置如图3所示。④位置检测元件。机械手的动做是按行程原则进行控制的,其上限、下限、左限、右限的位置分别用限位开关来检测。
[NextPage]
图3操作屏布置
2.2输出设备——由PLC的输出信号驱动的执行元件
本设计中输出设备应包括下降电磁阀、上升电磁阀、左移电磁阀、右移电磁阀、夹紧电磁阀等部分。为了对机械手原点位置进行指示,还要配置一个原点指示灯。
根据所确定的用户输入设备及输出设备可知,PLC共需要15点输入、6点输出。
3PLC的选择
该控制系统要实现的是步进控制,可以选择使用一般PLC,用移位寄存器和移位指令宋编程,由于所需的I/O点数为15/6点,考虑机械手操作的工艺是固定的,PLC的I/O基本上可不留余量。考虑经济、维修等因素可选择F1/F2系列可编程控制器。
F1/F2系列PLC的CPU为8039单片机芯片,执行时间为12/步,F1系列容量为1K。F2系统容量为2K步。储存方式有机内RAM、EPROM、EEPROM。输入为直流24V。输出有继电器、晶体管和可控硅三种输出方式。
F1/F2系列PLC大I/O点数为120点,可任意组合。用模拟量单元F2-6A-E后可进行模拟量控制。其中一台F2-6A-E可处理四路A/D、2路D/A。一台30点以上的主机可带三个模拟量单元,共计可处理12路A/D、6路D/A,且不占用开关量点数。用定位控制单元F2-30GM可进行位置控制,驱动伺服电机或步进电机。F1/F2系列PLC除可用简易型编程器外,还可进行图形编程,用IBM计算机或其他兼容机进行编程。经综合考虑,可选择F1/40M可编程控制器。
4PLC的程序设计
图4为机械手控制总程序结构框图。在该结构框图中,当操作方式选择开关置于“手动”时,输入点X407接通,其输入继电器常闭接点断开,执行手动操作程序。
图4总程序结构框图
当选择开关置于“单步”、“单周期”、“连续”时,其对应的输入点X410、X411、X412接通,其输入继电器常闭接点断开,执行自动操作程序。
在执行自动操作程序时,如操作选择开关置于“连续”时,启动后辅助继电器M200接通,程序自动循环。操作开关置于“单步”时,M200同样接通,程序也可以循环,但必须是每按一次启动按钮执行一步。如果操作开关置于“单周期”或运行过程中按下复位按钮时,则辅助继电器M200复位,程序执行完一个周期(即机械手回到原点)时自动停止。由于手动程序和自动程序采用了跳转指令,这两个程序段可以采用同一套输出继电器。
5结语
该机械手在改用PLC控制以前,采用传统的继电器控制,其控制线路复杂,继电器多;采用本程序控制之后,控制线路简单化,省去了全部继电器,安装十分方便,并且保证了系统运行的可靠性,减少了维修量,提高了工效,社会经济效益得到明显提高
本文以日本OMRON的C系列P型PLC为基础,介绍PLC在机械手步进控制中应用,并给出了详细的程序设计过程。该程序已在工业机械手中获得了应用,具有稳定、可靠的性能,可供同类设计参考。
1引言
机械手是工业自动控制领域中经常遇到的一种控制对象。机械手可以完成许多工作,如搬物、装配、切割、喷染等等,应用非常广泛。应用PLC控制机械手实现各种规定的工序动作,可以简化控制线路,节省成本,提高劳动生产率。图1是机械手搬运物品示意图。
图1 机械手搬物示意图
图中机械手的任务是将传送带A上的物品搬运到传送带B。为使机械手动作准确,在机械手的极限位置安装了限位开关SQ1、SQ2、SQ3、SQ4、SQ5,对机械手分别进行抓紧、左转、右转、上升、下降动作的限位,并发出动作到位的输入信号。传送带A上装有光电开关SP,用于检测传送带A上物品是否到位。机械手的起、停由图中的起动按钮SB1、停止按钮SB2控制。
传送带A、B由电动机拖动。机械手的上、下、左、右、抓紧、放松等动作由液压驱动,并分别由六个电磁阀来控制。
2机械手的动作流程
传送带B处于连续运行状态,故不需要用PLC控制。
机械手及传送带C 顺序动作的要求是:
1)按下起动按钮SB1时,机械手系统工作。上升电磁阀通电,手臂上升,至上升限位开关动作;
2) 左转电磁阀通电,手臂左转,至左转限位开关动作;
3) 下降电磁阀通电,手臂下降,至下降限位开关动作;
4)启动传送带A运行,由光电开关SP检测传送带A上有无物品送来,若检测到物品,则抓紧电磁阀通电,机械手抓紧,至抓紧限位开关动作;
5) 手臂上升,至上升限位开关动作;
6) 右转电磁阀通电,手臂右转,至右转限位开关动作;
7) 手臂下降,至下降限位开关动作;
8)放松电磁阀通电,机械手松开手爪,经延时2秒后,完成一次搬运任务,重复循环以上过程。
9)按下停止按钮SB2或断电时,机械手停止在现行工步上,重新起动时,机械手按停止前的动作继续工作。
根据对机械手的顺序动作要求,可以画出时序图如图2所示。由时序图可作出图3所示的机械手动作流程图。
图2 机械手佛那故作布序图
图3 机械手动作流程图
3PLC选型及其I/O点编号分配
3.1PLC的选型
由于机械手系统的输入/输出接点少,要求电气控制部分体积小,成本低,并能够用计算机对PLC进行监控和管理,故选用日本OMRON(立石)公司生产的多功能小型C20P主机。该机输入点为12,输出点为8。内部主要有:136个辅助继电器、16个特殊功能继电器、160个保持继电器、8个暂存继电器、48个定时/计数器、64个16位数据存贮器。
3.2I/O点编号分配
根据图3所示的机械手动作流程图,可以确定电气控制系统的I/O点分配,如表1所示。
表1机械手控制I/O分配表
1.引言
第二酿酒厂味淋酒、清酒生产时的温度控制由原来的车间室温环境保温改为单罐体热水夹套保温以实现节能降耗。味淋酒、清酒生产周期达60多天,如果糖化发酵罐的温度由人工逐罐控制显然是不现实的,而对物料温度进行自动调节,减少人为控制造成的差错,减少工作量,以保证产品质量。
2.系统描述
此系统采用上下位机的控制形式,选用美国GE公司的VersaMax系列可编程序控制器,通过以太网实现系统自控。PLC控制各工艺设备的运行,检测系统中各个生产设备的状态及工艺参数,并按确定的控制原则对各个设备进行控制和调节。操作站主要功能是操作人员通过CRT上的实时动态画面监控现场的生产状况并根据现场实际情况对生产过程进行必要的控制和调节。操作人员通过按钮转换,也可在变频控制现场对水泵采取手动操作,水泵的运行状态将在监控系统画面中显示。冷冻机组通过RS485标准接口,与PLC进行通讯,在监控系统中反映其运行状态。操作人员可对前发酵罐的搅拌实现计算机远程控制,并在操作界面上同步显示运行状态。
3.系统构成及工艺简介
本生产线自控系统分为变频控制系统、PLC控制系统、上位机监控系统三个系统。控制级别设置为三层:层为在上位机上显示现场所有的实时采集数据、报警,并对整个生产过程进行动画模拟显示,操作员可通过上位机对各阀门及变频器进行手/自动切换控制,对生产过程远程控制;第二层为PLC逻辑联动控制,由PLC根据现场各测试设备采集的数据及系统设备运行逻辑关系,自动控制各站点内的电气设备运行状态;第三层为现场手动控制,操作人员可单独启停测试各变频器设备,并有现场报警指示。此时变频器工作状态也将在上位机上有状态显示,以便实现监控。
水泵的控制分成自动控制和手动控制二种方式,可以分别变频控制柜内的手/自动转换开关进行切换。这样的控制方式能大限度地保证设备、装置的安全操作的需要。
在自动方式下,PLC可以根据压力变送器检测信号,对变频器进行自动调节水泵的转速以控制供水管道内的压力,当某一台水泵出现故障时,系统能根据要求采用手动方式切换到备用水泵上运行,以确保温控系统的正常运行。在手动方式下,操作工可根据实际的情况做出启动和停止控制,不管在何种控制方式下,在控制柜上面都有指示灯来显示每台水泵的工作状态。
前发酵罐的搅拌控制方式也分为现场控制操作和计算机远程操作,并互锁,以求达到方便和安全。
4.控制系统网络结构
网络采用目前流行10/100M自适应TCP/IP工业以太环网。支持标准的IEEE802.3CSMA/CD.各站点的网络速度10M/100M自适应。可以支持上位机之间的文件访问,PLC控制站之间数据交换及PLC控制站和上位机之间数据交换。上位机能对分站的PLC的灵活地进行组态配置及编程调试。网络主干线路具有抗电磁、抗振动干扰、抗潮湿、耐腐蚀。某一个节点损坏或离线不影响整个网络的通讯。
5.系统PLC实现的控制功能
系统PLC除了实现如上所述的通讯功能外,还要实现对整个系统的控制。PLC完成对现场的数据采集,将采集到的数据传至操作站的上位机,接受上位机发出的指令对现场的执行机构进行控制执行,现场采集的信号种类主要包括;开关量(自动阀的开、关回讯及各类报警信号的输出等)、模拟量信号(温度、压力等现场各种信号)等。控制输出信号主要有;泵、各种工艺阀门等控制输出的开关量。完成整个生产过程的自动顺序控制。PLC主要技术指标:
1)温度检测精度0.1℃,。
2)压力检测精度0.5%;
3)温度控制精度为±0.5℃ (发酵过程)。
4)开关状态检测:均以开关量形式读入,无触点开关 容量24V DC500mA。
5)控制信号输出:无触点开关,容量24V DC500mA。
6)采集、控制输出响应时间≤200ms。
发酵罐现场的温度测量采用PLC的温度模块完成,从热电阻或热电偶直接读取信号。读入的温度值为BCD码,可直接用于显示。具有断线检测等功能。温度模块转换速度慢,响应时间以秒计,但一般温度这种参数变化比较缓慢,故使用它还是能满足控制要求的。
6.控制系统软件简介
操作站由工业控制计算机组成,系统的整个控制过程可从上位机画面上直接进行可视化操作。而上位机则完成工艺流程及参数、各控制回路的参数设定,测量参数的历史、实时趋势曲线、工艺曲线及报警等画面的显示,以及打印报表、保存数据的管理功能,系统提供了图形化的人机界面,操作方便,
操作站选用iFIX3.5组态软件做为控制系统工作平台,运行在bbbbbbS2000系统。iFXE是由美国Inbbblution公司生产的软件产品。一个基于开放式、组件结构的平台框架,允许所有Inbbblution的应用程序及第三方组件均可无缝插入(pulg-in)。iFIX是InbbblutionDYNAMICS自动化软件家族中的HMI/SCADA组件,是基于bbbbbbS NT 的对生产过程监视和控制的自动化解决方案。
iFIX3.5组态软件主要完成工艺流程监控,现场测量数据显示,控制回路参数设定,趋势曲线查询显示,温度曲线编辑,数据记录,报表打印,报警显示记录、配料控制和系统自检等功能。
7.结束语
将PLC技术应用于清酒、味淋酒生产中,开国内清酒、味淋酒生产之先河,生产史上将是一个里程碑。经过一年地运行,效果稳定可靠,工艺参数控制jingque,安全系数高,完全符合黄酒行业生产需求,并可提高产量30%,减少现场操作人员人数,减少劳动强度,提升了企业的形象,提高了企业经济效益,为将来大规模推广此技术积累了宝贵的手资料。
1.引言
第二酿酒厂味淋酒、清酒生产时的温度控制由原来的车间室温环境保温改为单罐体热水夹套保温以实现节能降耗。味淋酒、清酒生产周期达60多天,如果糖化发酵罐的温度由人工逐罐控制显然是不现实的,而对物料温度进行自动调节,减少人为控制造成的差错,减少工作量,以保证产品质量。
2.系统描述
此系统采用上下位机的控制形式,选用美国GE公司的VersaMax系列可编程序控制器,通过以太网实现系统自控。PLC控制各工艺设备的运行,检测系统中各个生产设备的状态及工艺参数,并按确定的控制原则对各个设备进行控制和调节。操作站主要功能是操作人员通过CRT上的实时动态画面监控现场的生产状况并根据现场实际情况对生产过程进行必要的控制和调节。操作人员通过按钮转换,也可在变频控制现场对水泵采取手动操作,水泵的运行状态将在监控系统画面中显示。冷冻机组通过RS485标准接口,与PLC进行通讯,在监控系统中反映其运行状态。操作人员可对前发酵罐的搅拌实现计算机远程控制,并在操作界面上同步显示运行状态。
[NextPage]
3.系统构成及工艺简介
本生产线自控系统分为变频控制系统、PLC控制系统、上位机监控系统三个系统。控制级别设置为三层:层为在上位机上显示现场所有的实时采集数据、报警,并对整个生产过程进行动画模拟显示,操作员可通过上位机对各阀门及变频器进行手/自动切换控制,对生产过程远程控制;第二层为PLC逻辑联动控制,由PLC根据现场各测试设备采集的数据及系统设备运行逻辑关系,自动控制各站点内的电气设备运行状态;第三层为现场手动控制,操作人员可单独启停测试各变频器设备,并有现场报警指示。此时变频器工作状态也将在上位机上有状态显示,以便实现监控。
水泵的控制分成自动控制和手动控制二种方式,可以分别变频控制柜内的手/自动转换开关进行切换。这样的控制方式能大限度地保证设备、装置的安全操作的需要。
在自动方式下,PLC可以根据压力变送器检测信号,对变频器进行自动调节水泵的转速以控制供水管道内的压力,当某一台水泵出现故障时,系统能根据要求采用手动方式切换到备用水泵上运行,以确保温控系统的正常运行。在手动方式下,操作工可根据实际的情况做出启动和停止控制,不管在何种控制方式下,在控制柜上面都有指示灯来显示每台水泵的工作状态。
前发酵罐的搅拌控制方式也分为现场控制操作和计算机远程操作,并互锁,以求达到方便和安全。
4.控制系统网络结构
网络采用目前流行10/100M自适应TCP/IP工业以太环网。支持标准的IEEE802.3CSMA/CD.各站点的网络速度10M/100M自适应。可以支持上位机之间的文件访问,PLC控制站之间数据交换及PLC控制站和上位机之间数据交换。上位机能对分站的PLC的灵活地进行组态配置及编程调试。网络主干线路具有抗电磁、抗振动干扰、抗潮湿、耐腐蚀。某一个节点损坏或离线不影响整个网络的通讯。
5.系统PLC实现的控制功能
系统PLC除了实现如上所述的通讯功能外,还要实现对整个系统的控制。PLC完成对现场的数据采集,将采集到的数据传至操作站的上位机,接受上位机发出的指令对现场的执行机构进行控制执行,现场采集的信号种类主要包括;开关量(自动阀的开、关回讯及各类报警信号的输出等)、模拟量信号(温度、压力等现场各种信号)等。控制输出信号主要有;泵、各种工艺阀门等控制输出的开关量。完成整个生产过程的自动顺序控制。PLC主要技术指标:
1)温度检测精度0.1℃,。
2)压力检测精度0.5%;
3)温度控制精度为±0.5℃(发酵过程)。
4)开关状态检测:均以开关量形式读入,无触点开关容量24V DC500mA。
5)控制信号输出:无触点开关,容量24V DC500mA。
6)采集、控制输出响应时间≤200ms。
发酵罐现场的温度测量采用PLC的温度模块完成,从热电阻或热电偶直接读取信号。读入的温度值为BCD码,可直接用于显示。具有断线检测等功能。温度模块转换速度慢,响应时间以秒计,但一般温度这种参数变化比较缓慢,故使用它还是能满足控制要求的。
6.控制系统软件简介
操作站由工业控制计算机组成,系统的整个控制过程可从上位机画面上直接进行可视化操作。而上位机则完成工艺流程及参数、各控制回路的参数设定,测量参数的历史、实时趋势曲线、工艺曲线及报警等画面的显示,以及打印报表、保存数据的管理功能,系统提供了图形化的人机界面,操作方便,
操作站选用iFIX3.5组态软件做为控制系统工作平台,运行在bbbbbbS2000系统。iFXE是由美国Inbbblution公司生产的软件产品。一个基于开放式、组件结构的平台框架,允许所有Inbbblution的应用程序及第三方组件均可无缝插入(pulg-in)。iFIX是InbbblutionDYNAMICS自动化软件家族中的HMI/SCADA组件,是基于bbbbbbS NT的对生产过程监视和控制的自动化解决方案。
iFIX3.5组态软件主要完成工艺流程监控,现场测量数据显示,控制回路参数设定,趋势曲线查询显示,温度曲线编辑,数据记录,报表打印,报警显示记录、配料控制和系统自检等功能。
7.结束语
将PLC技术应用于清酒、味淋酒生产中,开国内清酒、味淋酒生产之先河,生产史上将是一个里程碑。经过一年地运行,效果稳定可靠,工艺参数控制jingque,安全系数高,完全符合黄酒行业生产需求,并可提高产量30%,减少现场操作人员人数,减少劳动强度,提升了企业的形象,提高了企业经济效益,为将来大规模推广此技术积累了宝贵的手资料。