西门子模块6ES7223-1HF22-0XA8厂家供应
当PLC的用户程序要保留在RAM中时,就会用到电池,电池通常是3V或3.6V的不可充电的锂电池,电池的使用寿命通常是五年左右,电池用久了,电压就会下降,当其下降到不足以保证RAM中数据时,RAM中的程序就会丢失。如果用户没有备份程序,就会相当麻烦。[1]
一般PLC内部设有电池电压检测电路,当电压下降到一定程度时,PLC就会报警,提醒更换电池。PLC的使用说明书都有提供更换电池的方法。一般来说,PLC在断电后,因为PLC上RAM电源端接有充电电容,把电池去掉,电容上充电电量也足够RAM内的数据保持一段时间,如果取掉电池后在短时间内(通常5分钟)再将新电池换上去,数据是不会丢失的。
但用户实际使用PLC的环境情况不尽相同,例如电容的容量下降,RAM电源回路有灰尘、油泥等形成放电回路等,这会加快PLC断电后电容的放电速度,从而使时间不好把握。如果在带电的情况下更换电池就可保程序*。因为电源始终会有电压加在RAM芯片的电源脚。当然更换时亦要小心应对,注意电池的极性以及避免短路情况发生。
是把PLC通电15分钟(给内部电容充电),断电,在5分钟内换好新的电池,再上电试一下。
西门子PLC有带卡的,有不带电池的;也有带卡的,带电池的。程序存在MMC卡中,如果没有存储卡,需要电池保存程序的,更换电池时候务必注意,带电的情况下,将旧电池取出来,将新电池换上即可。
优点编辑
可靠
PLC不需要大量的活动元件和连线电子元件。它的连线大大减少。系统的维修简单,维修时间短。Plc采用了一系列可靠性设计的方法进行设计。例如:冗余的设计。断电保护,故障诊断和信息保护及恢复。PLC是为工业生产过程控制而专门设计的控制装置,它具有比通用计算机控制更简单的编程语言和更可靠的硬件。采用了精简化的编程语言。编程出错率大大降低。
易操作
PLC有较高的易操作性。它具有编程简单,操作方便,维修容易等特点,一般不容易发生操作的错误。对PLC的操作包括程序输入和程序更改的操作。程序的输入直接可接显示,更改程序的操作也可以直接根据所需要的地址编号或接点号进行搜索或程序寻找,进行更改。PLC有多种程序设计语言可供使用。用于梯形图与电气原理图较为接近。容易掌握和理解。PLC具有的自诊断功能对维修人员维修技能的要求降低。当系统发生故障时,通过硬件和软件的自诊断,维修人员可以很快找到故障的部位
系统结构及功能
系统包括操作员站、工程师站、自动化系统、网络和现场I/O站等几个部分。
系统各部分功能:
操作员站:提供全汉化人机界面,实现控制系统的监控操作功能(操作、显示、报表、报警、趋势),并且可以在人机界面上直接查看对应的step7源程序。
工程师站:用于系统的组态和维护。
自动化系统:使用SIMATIC控制器完成回路调节和逻辑运算。
现场I/O站:使用现场总线技术,在设备现场直接采集现场仪表的信号,控制现场的执行机构。
现场总线ProfiBus:用于连接控制单元与操作员站以及管理网络
序列发生器诊断显示
WinCC flexible/ProAgent 和WinCC/ProAgent1) 具有图像监控和序列发生器诊断的功能。这样用户就可在 HMI设备上监控激活/故障步骤以及故障原因,如故障转换条件
设备概述
设备概述以表格的形式显示了所有的技术设备和各自的子设备(系统/机器部件)。在此显示中,用户能够识别相应设备正处于哪个操作模式或状态等。如果需要,用户可以更改操作模式。
故障单元由属性标记。
诊断细节显示
诊断详细视图显示了所发生的过程故障的故障操作数和发生时间。当时的状态信息也可作为一种选择予以显示诊断结果或是以梯形图(LAD)语句表(STL)显示,或用符号表显示并为每种显示格式输出来自S7符号表的带符号和注释的操作数只显示那些操作数,并加强亮度来标记发生错误的故障属性还可以切换到一个可扫描PLC中所有操作数的当前状态的视图。
运动显示
运动视图用于对调试提供支持每条运动线包含一条注释行,它描述运动(例如X轴),实施运动的二个作用,控制运动用的回检信号以及限制到达的信息(多为16条信息)。
运动可在使用SIMATIC面板和多功能面板的情况下通过侧面的软键进行控制时间要求严格的运动可通过PLC输入直接激活(如果得到目标硬件支持)24V直接控制键,通过PROFIBUS的DP直接控制键)
序列发生器运行显示
序列发生器运行画面为控制序列器发生提供支持。如同S7-GRAPH中的状态/控制,它能提供各种功能,如初始化和确认序列发生器,启动,撤消和递增的单步,以及选取控制方式.步骤以表格形式输出,附有每个步骤的编号和名称。有效和错误的步骤以属性标出,这就为操作人员提供序列发生器当前状态的一个清晰的概貌。
- 在故障定位和矫正方面为设备/机器维护人员提供的支持,
- 增强设备的实用性并且
- 减少了停工时间。
roAgent 6.0 也支持此功能。
提高了产量,使得工程开发费用小化,降低了使用寿命内的成本
ProAgent
许可
运行版软件,每个目标硬件需要一个许可证。
您可以在此处找到有关软件更新服务、许可证类型、在线软件交付以及如何使用自动化许可证管理器
西门子6SN1118-0DK23-0AA2
CU310 PN 控制单元专为通信和功率模块的开环/闭环控制功能而设计。 CU310 PN 与功率单元和 CF卡相组合,形成了功能强大的单轴交流驱动器。 通过 PROFINET IO 提供与更高控制功能的通信链路。
设计
控制器 CU310 PN 标准提供有下列接口:
1 个 DRIVE-CLiQ 插槽,可实现与其它 DRIVE-CliQ 设备的通讯,例如传感器或终端模块
1 个 PM‑IF 接口,用于与块型功率模块的通信
1 个 BOP20 基本型操作员面板接口
1 个 PROFINET 接口,带有 PROFIdrive V4配置文件的 2 个端口(RJ45 插座)
1 编码器评估
可以对下列编码器信号进行处理:
增量式编码器 TTL/HTL
SSI 编码器,无增量信号
4 个可参数化数字量输入(浮动式)
4 个可参数化双向数字量输出/数字量输入(非浮置)
1 个 RS232 串行接口
1 个 CF 卡插槽,该卡中存储了固件和参数
3 个测试接口和一个用于调试的参考接地;
1 个电子装置电源接口,通过 24 V DC 电源连接器连接
1 个安全停止输入端(启动脉冲),用于控制连接的 PM340 功率模块
1 点温度传感器输入(KTY84-130 或 PTC)
1 PE/接地连接
CU310 PN 控制器的状态通过两个多色 LED 来显示。
BOP20 基本型操作员面板还可直接安装到 CU310 PN 控制单元上以进行诊断。
由于固件和参数设置保存在一个插入式 CF 卡上,无需软件工具就可更换控制器。
集成
CU310 PN 控制单元通过 PM‑IF 接口驱动书本型功率模块。在这种情况下,其他 DRIVE-CLiQ组件,如传感器或端子模块,可连接到 CU310 PN 控制单元上的 DRIVE-CLiQ 插座。
通过 DRIVE-CLiQ 接口直接由 CU310 DPPN控制单元驱动装机装柜型功率模块。使用该选件时,必须将传感器和端子模块连接到功率模块上未被占用的 DRIVE-CLiQ 插座。
可使用 BOP20 基本型操作员面板更改参数设置。在操作过程中,还可将 BOP20 面板安装到 CU310 PN控制单元上以进行诊断。
使用 STARTER 调试工具调试和诊断 CU310 PN 控制单元和其他连接的组件。CU310 PN 控制单元需要装有 2.4版或更高版本的固件的 CF 卡。
CU310 PN 控制单元使用 PROFINET IO 和 PROFIdrive V4 配置文件与更别的控制系统通信。
西门子数控系统基本构成
一.西门子840D系统的组成
SINUMERIK840D是由数控及驱动单元(CCU或NCU),MMC,PLC模块三部分组成,由于在集成系统时,总是将SIMODRIVE611D驱动和数控单元(CCU或NCU)并排放在一起,并用设备总线互相连接,在说明时将二者划归一处。
1.人机界面
人机交换界面负责NC数据的输入和显示,它由MMC和OP组成:
MMC包括:
- OP单元
- MMC
- MCP三部分。
MMC实际上就是一台计算机,有自己独立的CPU,还可以带硬盘,带软驱;OP单元正是这台计算机的显示器,而西门子MMC的控制软件也在这台计算机中。
a.MMC
我们常用的MMC有两种:
MMCC100.2
MMC103
其中MMC100.2的CPU为486,不能带硬盘;而MMC103的CPU为奔腾,可以带硬盘,一般的,用户为SINUMERIK810D配MMC100.2,而为SINUMERIK840D配MMC103。
PCU(PCUNIT)是专门为配合西门子的操作面板OP10、OP10S、OP10C、OP12、OP15等而开发的MMC模块,目前有三种PCU模块——PCU20、PCU50、PCU70,PCU20对应于MMC100.2,不带硬盘,但可以带软驱。PCU50、PCU70对应于MMC103,可以带硬盘,与MMC不同的是:PCU50的软件是基于WINDOWSNT的。PCU的软件被称作HMI, HMI有分为两种:嵌入式HMI和HMI。一般标准供货时,PCU20装载的是嵌入式HMI,而PCU50和PCU70则装载HMI。
b.OP
OP单元一般包括一个10.4〞TFT显示屏和一个NC键盘。根据用户不同的要求,西门子为用户选配不同的OP单元,如:OP030,OP031,OP032,OP032S等,其中OP031为常用。
c.MCP
MCP是专门为数控机床而配置的,它也是OPI上的一个节点,根据应用场合不同,其布局也不同,目前,有车床版MCP和铣床版MCP两种。对810D和840D,MCP的MPI地址分别为14和6,用MCP后面的S3开关设定。
对于SINUMERIK840D应用了MPI(Multiple PointInterface)总线技术,传输速率为187.5k/秒,OP单元为这个总线构成的网络中的一个节点。为提高人机交互的效率,又有OPI(OperatorPanelInterface)总线,它的传输速率为1.5M/秒。
2.数控及驱动单元
a.NCU数控单元
SINUMERIK840D的数控单元被称为NCU(NumenricalControlunit)单元:中央控制单元,负责NC所有的功能,机床的逻辑控制,还有和MMC的通讯 它由一个COM CPU板.一个PLC CPU板和一个DRIVE板组成.
根据选用硬件如CPU芯片等和功能配置的不同,NCU分为NCU561.2,NCU571.2,NCU572.2,NCU573.2(12轴),NCU573.2(31轴)等若干种,同样,NCU单元中也集成SINUMERIK840D数控CPU和SIMATICPLCCPU芯片,包括相应的数控软件和PLC控制软件,并且带有MPI或Profibus借口,RS232借口,手轮及测量接口,PCMCIA卡插槽等,所不同的是NCU单元很薄,所有的驱动模块均排列在其右侧。
b.数字驱动
数字伺服:运动控制的执行部分,由611D伺服驱动和1FT6(1FK6)电机组成 SINUMERIK840D配置的驱动一般都采用SIMODRIVE611D.它包括两部分:电源模块+驱动模块(功率模块)。
电源模块:主要为NC和给驱动装置提供控制和动力电源,产生母线电压,监测电源和模块状态。根据容量不同,凡小于15KW均不带馈入装置,极为U/E电源模块;凡大于15KW均需带馈入装置,记为I/RF电源模块,通过模块上的订货号或标记可识别。
611D数字驱动:是新一代数字控制总线驱动的交流驱动,它分为双轴模块和单轴模块两种,相应的进给伺服电机可采用1FT6或者1FK6系列,编码器信号为1Vpp正弦波,可实现全闭环控制。主轴伺服电机为1PH7系列
发动机装配线PLC控制系统,主要针对包括转台、举升台、举升转移台、翻转机五种工位的控制。在汽车发动机装配过程中,由于被装配零件的多样性,需要在装配线的每个工段适当调整发动机的方位以方便装配零件。装配线上共计20余个工位,包括7个普通转台、2个维修转台、4个无滚轮举升台、7个单向滚轮举升台以及2个翻转机。
整个被控对象包括22个工位,每个工位上包含必需的转移电机或举升电机,还有32个生产线传输电机。每个工位均由一个ET200S和一个ET200eco从站组成,用于该工位的I/O点数据采集和发送以及分散控制。
2 系统结构及功能
系统包括操作员站、工程师站、自动化系统、网络和现场I/O站等几个部分。
系统各部分功能:
操作员站:提供全汉化人机界面,实现控制系统的监控操作功能(操作、显示、报表、报警、趋势),并且可以在人机界面上直接查看对应的step7源程序。
工程师站:用于系统的组态和维护。
自动化系统:使用SIMATIC控制器完成回路调节和逻辑运算。
现场I/O站:使用现场总线技术,在设备现场直接采集现场仪表的信号,控制现场的执行机构。
现场总线ProfiBus:用于连接控制单元与操作员站以及管理网络。
本系统采用PLC300CPU和CP342-5、CP343-1的接口模块相连构成系统的主站。CP342-5是用于连接S7-300和profibus-DP的主/从站接口模块,CP343-1是用于连接S7-300和工业以太网的接口模块。在该控制系统中,除了上述主站外,从站是由22个ET200S和22个ET200eco组成,分别分布在两条profibus网络上。CPU上自带的profibus-DP接口构成profibusⅠ线,CP 342-5接口模块构成profibusⅡ线。
系统配置功能图如图所示:
871cb7635df57119afb9773dcdd4e271.jpg
系统中ET200S从站上采用的IM151-1接口模块有两种:基本型和标准型,基本型的接口模块所能挂接的电源管理模块和I/O模块个数范围为2~12个,标准型的接口模块其范围为2~63个。当从站I/O模块较多时,宜选用标准型的接口模块。接口模块上带有profibus地址设定拨码开关。
系统中ET200eco从站中选用了8DI和16DI两种模板,模板结构紧凑,模板的供电采用7/8‘电源线,模板的通讯采用M12通讯接头。接线灵活而快速,方便拔插。其接口模块上带有2个旋转式编码开关用于profibus地址分配。
网络设备按照适应工业现场环境的程度,以及生产线的布局来考虑选用不同防护等级。控制箱中的模块采用防护等级为20的ET200SI/O模块,对应每个控制箱的还有一个防护等级为67的ET200eco模块,置于生产线滚轮下方,由于该模块需要接触到现场较为恶劣的生产环境,需要有防水防油防尘等功能
西门子6SN1118-0DG23-0AA1
(1). 在STEP7Micor/WIN软件中(S7-200的编程软件),对于模拟量输入通道设有软件滤波功能,如图所示,具体请参见《S7-200 ?LOGO? SITOP 参考》->系统块-模拟量滤波。
在系统块中设置模拟量通道滤波时,RTD和TC模块占用的模拟量通道,应禁止滤波功能。
西门子6SL3040-1MA00-0AA0
(2) EM231TC和RTD模块上,均有24V电源指示灯和SF故障指示灯。如图所示:(a)若24V电源指示灯=OFF,则说明该模块没有24V工作电源;(b)若SF红灯闪烁,原因可能是:模块内部软件检测出外接断线,或者输入超出范围。
注:具体请参见:《S7-200 ? LOGO? SITOP 参考》->EM231 RTD/EM231 TC。
AO模拟量输出模块
S7-200的扩展模块里,分别有2路、4路的模拟量输出模块EM232。根据接线方式(M-V或M-I)选择输出信号类型,电压:±10V,电流:0~20mA(4~20mA)。
AI/AO模拟量输入输出模块
(A) CPU模块本体集成的2路AI和1路AO
S7-200只有CPU224XP和CPU224XPsi,本体集成有模拟量通道。其中,2路AI是:电压信号±10V,1路AO是:电压信号0~10V;或者电流信号0~20mA(4~20mA),输出信号类型可以通过硬件接线来选择。
(B) EM235模拟量输入输出模块
EM235模块有4路AI和1路AO。通过拨码开关设置来选择4路AI通道的输入信号程,如下表所示,这个模块可以测量毫伏级(mV)的信号;1路AO是:电压信号±10V;或电流信号0~20mA(4~20mA),可以根据硬件接线方式(M-V或M-I)选择输出信号类型。
注:模块上的电位计是用来调节输入信号和转换数值的放大关系,在模块出厂时已经设置好了,如无需要,请不要随意更改。
常见问题分析
A.模拟量输入与数字量的对应关系:
模拟量信号(0~10V,0~5V或0~20mA)在S7-200CPU内部用0~32000的数值表示(注:4~20mA对应6400~32000),这两者之间有一定的数学关系,如图所示:
B.模拟量模块的硬件接线介绍
(1)CPU 224 XP集成有2路电压输入,接线方法见a:分别为A+和M、B+和M,此时只能输入±10V 电压信号。
CPU224XP还集成有1路模拟量输出信号。电流输出如图b,将负载接在I和M端子之间;电压输出如图c,将负载接在V和M端子之间。
(2)模拟量输入的接线方式
以4AIEM231模块为例,分别介绍电压、电流型输入信号的接线方式,如图所示。注意:此接线图是一个示意图,表述的是不同的接线方式,并不是指该模块只有A通道可以接入电压,B通道必须悬空,C和D通道只能接入电流。
当您的信号为电压输入时可以参考接线方法a,以此类推。
方式a. 电压输入方式:信号正接A+;信号负接A-;
方式b. 未用通道接法(不要悬空):未用通道需短接,如B+和B-短接;
方式c. 电流输入方式(四线制):信号正接C+,C+与RC短接;信号负接C-,C-和模块的M端短接。
方式d. 电流输入方式(两线制):信号线接D+,D+与RD短接;电源M端接D-,和模块的M端短接。
注:具体请参见:《S7-200 ? LOGO? SITOP 参考》->模拟量模块接线。
(3)电流型信号输入接线方式
电流型信号的接线方式,分为四线制、三线制、二线制接法。这里讨论的“几线制",是以传感器或仪表变送器是否需要外供电源来区别的,而并不是指EM231模块需要几根信号线,或该变送器的信号线输出。
a. 四线制-电流型信号的接法:
四线制信号是指信号设备本身外接供电电源,有信号+、信号-两根信号线输出。供电电源可有220VAC或24VDC,接线如图所示:
b. 三线制-电流型信号的接法:
三线制信号是指信号设备本身外接供电电源,只有一根信号线输出,该信号线与电源线共用公共端,通常情况是共负端的。接线如图所示:
注:若设备的24VDC供电电源与EM231模块的供电电源不是同一个电源,那么,需要将模块的M端与该通道的负端引脚短接(如,M和C-短接)。这是为了使模块与测量通道工作在同一的参考电压,也就是等电位。下面的二线制接法同理。
c. 二线制-电流型信号的接法:
二线制信号是指信号设备本身只有两根外接线,设备的工作电源由信号线提供,即其中一根线接电源,另一根线是信号输出。接线如图所示:
C.224XP本体集成的AI,能否接电流信号0~20mA?
1、概述
优化电机功能可以在项目配置中选择,配置结束后通过施加使能命令开始优化;也可以在项目配置结束后,通过专家参数方式完成。
> 如有必要需对变频器*行参数工厂复位(P0010=30、P0970=1)。
优化顺序:
1).完成项目配置并依照电机铭牌正确输入电机额定数据及编码器类型
2).执行电机数据计算P340
3).电机数据静态辨识P1910
4).依照实际工艺要求使用STARTER 中的Trace 功能调整速度环参数(调试方法参照《SINAMICS S120快速入门》)
5).电机数据及控制数据动态优化P1960
电机优化条件:电机冷态,抱闸没有闭合、有效措施确保机械系统无危险
2、优化过程
a.电机数据计算
P340是基于电机铭牌数据的计算(定/转子阻抗感抗等)该过程不必使能变频器。计算结束后P340自动恢复为0。
b.电机数据静态辨识
P1910用于电机数据静态辨识,该过程需要使能变频器。辨识过程中
1. 变频器有输出电压,输出电流,
2. 电机可能转动大210?
P1910 = -3 接受识别结果
P1910 = -2 辨识过程中,若变频器发现编码器反向则报故障F07933,此时应检查电机或编码器方向若正确则设定P1910=-2接受正确方向。若不正确则需修改电机接线并重新执行辨识过程。
P1910 = -1数据辨识但不接受
P1910 = 0 禁止数据辨识
P1910 = 1 数据辨识并接受辨识结果
P1910=1 将计算:定子冷态阻抗P350、转子冷态阻抗P354、定子漏感P356、转子漏感P358、主电感P360。
电机数据静态辨识步骤:
i. 设P1910=1
ii. 使能 ON/OFF1
辨识结束后P1910自动恢复为0
速度环动态特性的优化:
依照实际工艺要求使用STARTER 中的Trace功能优化速度P1460/P1470、P1662/P1472(调试方法参照《SINAMICS S120 快速入门》)
c.电机数据动态辨识
电机数据动态辨识由P1959 + P1960配合使用
出厂默认值P1959. 1、2、5、6、7、9、10 都已激活
P1960 = -3 接受识别结果
P1960 = -2 辨识过程中,若变频器发现编码器反向则报故障F07933,此时应检查电机或编码器方向若正确则设定P1910=-2接受正确方向。若不正确则需修改电机接线并重新执行辨识过程。
P1960 = -1数据辨识但不接受
P1960 = 0 禁止数据辨识
P1960 = 1 数据辨识并接受辨识结果
电机数据动态辨识,需要使能变频器。辨识过程将完成:
? 计算磁化曲线
? 计算系统转动惯量与电机转动惯量比例(P342)等
动态辨识步骤:
1. 电机空载以jingque计算电机动态数据(如电机的转动惯量等)。
2. 电机带载优化,带载后系统总的转动惯量等发生变化需执行p1959=4, P1960=1以完成动态优化。
3. 如果项目配置时选择了扩展的给定通道(ExtendedSetpoint)斜坡函数发生器有效,建议在做空载优化时通过设置P1958=0取消(P1958仅在电机数据动态辨识时有效),不要使用旋转方向禁止功能P1959.14=1、P1959.15=1。
4.若电机带载后需要测试系统转动惯量,则需根据负载及机械设备的实际情况设定斜坡上升下降时间P1958≠0,执行P1960=1、P1958=4,优化过程中只有电流及速度限幅有效