西门子模块6ES7222-1HD22-0XA0产品规格
1 引言
莱钢1#1000m3高炉2005年投产,矿槽炉顶上料系统设计采用施耐德公司昆腾系列plc,该控制系统实现了对矿石、球团、烧结、焦碳等原料的自动称量,并完成称量误差的自动补偿;实现了炉顶各阀门的顺序自动开关,α、β、γ的角度自动设定以及其他相关辅助设备的自动控制;实现了对高炉矿槽炉顶上料系统的数据采集、数据显示与数据控制。该系统投运以来,运行稳定,效果良好。
2 高炉矿槽炉顶上料系统工艺流程
2.1 槽上控制工艺流程
高炉槽上设计13个料仓,4个烧结矿仓(3#、4#、5#、6#),2个焦炭仓(7#,8#),3个球团仓(9#、10#、11#),2个杂矿仓(1#、2#),1个焦丁仓。槽上有3条打料皮带机,每条皮带机对应一辆卸料小车,采用卸料小车可以将胶带机输送的原料卸至不同的料仓,当采用卸料小车进行卸料时,卸料小车先开至所选择的料仓上方,启动胶带机,原料就经卸料小车卸到小车下方的料仓内。
2.2 槽下控制工艺流程
高炉槽下设两个大烧结矿仓,两个小烧结矿仓,两个杂矿仓,三个球团仓,一个备用仓。每个矿仓下都有振动筛,筛除小于5mm的碎矿,大烧结矿仓的矿经过筛分后分别进入料坑的左右中间称量斗,小烧结矿仓的矿经筛分后分别进入各自配套的称量斗,经矿石皮带机集中运送,经料坑上方的翻板进入料坑中的矿石中间斗,经筛分后的5mm烧结矿经返矿皮带机运到碎矿仓。焦炭设左右两个焦仓,仓下装有振动筛和振动给料机,焦炭经筛分后,大于20mm的块焦,分别直接进入料坑内的左右焦炭称量斗,筛下小于20mm的碎焦经sj1、sj2胶带机倒运到sj3碎焦胶带机上,送至碎焦仓上振动筛,将碎焦分级成8mm以上和8mm以下两种产品,大于8mm的焦丁由sj4胶带机运至焦丁仓,再经焦丁给料机到焦丁称量斗,到供料胶带机与烧结矿一起进入料坑中间斗。小于8mm的碎焦落入焦粉仓等待汽车外运。当料车到底后,相应的矿石中间斗或焦炭斗向料车装料。
2.3 炉顶控制工艺流程
莱钢1#1000m3高炉炉顶采用无料钟串罐式炉顶,分为受料斗、料罐、气密箱等组成部分。在上料过程中,炉料先投进受料斗里,随后放入料罐中,在这个过程中,由于高炉不能和大气相通,通过控制炉顶放散阀、均压阀、上密阀、柱塞阀、下密阀的顺序开关来实现高炉的正常下料,通过控制α、β、γ来实现高炉布料。料面检测设备采用机械探尺与雷达探尺相配合。
2.4 装料流程
焦炭、烧结矿等各种入炉原料由料车运到炉顶,倒入受料斗中,受料斗多可装4车料。料罐放散完毕后打开上密阀和柱塞阀向料罐装料。装料完成后料罐进行均压。一旦高炉准备接受下一批炉料就进行布料,打开下密阀并将料流调节阀打开至设定开度,料罐中的炉料通过料流调节阀流到旋转的布料溜槽上。在布料期间,通过γ射线探测料流,该装置可发出料罐清空信号。一旦料罐清空,关闭料流调节阀和下密封阀,打开放散阀进行放散,准备下一次装料。
2.5 布料流程
一批料中,允许焦矿设定两个不同的料线位置。当探尺达到规定的料线位置后,自动提升到位,发出布料信号,下密封阀打开,布料溜槽进行启动。β角旋转到设定速度并且到达布料位置,开启料流调节阀,按照批重及规定的布料程序,调节料流调节阀开度和溜槽倾角,使每圈料流均匀、重量相等和首尾相接的向炉喉任意布料。为了减少料头料尾不均匀现象,每批料布完后,布料角度自动步进60度。
高炉上料系统工艺流程如图1所示。
图1 高炉上料系统工艺流程图
3 上料自动化系统设计
3.1 控制系统硬件配置
整个上料系统采用一套plc系统,两台上位机完成对整个上料系统的监控及数据采集等。自动控制系统采用schneider tsx quantum 系列plc硬件组成基础自动化系统。采用mp7监控软件,编程软件采用concept2.6,bbbbbbs 2000作为系统平台界面,组成计算机化的操作系统,实现人机通讯。
控制器与上位机之间采用环形工业以太网进行通讯。主机控制单元接受由i/o接口收集的信号进行开关量和模拟量的处理后,将信号经i/o接口实现对设备的控制,与监控站及上位机通讯。这个系统配置如图2所示。
其中处理器采用昆腾系列140-cpu-534-14a,电源模块采用140-cps-114-20,远程通讯模版采用140-noe-771-01,i/o模板配置如下:数字量输入模板为140-dai-753-00、140-ddi-353-00;数字量输出模板为140-ddo-353-00;模拟量输入模板为140-aci-040-00;模拟量输出模板为140-aco-130-00,远程i/o模版采用140 crp 931 10、140 cra 931 00。
3.2 槽下控制功能设计
(1)槽下控制范围及内容:实现对矿石、球团、烧结、焦炭等入炉原料的自动称量,并完成称量误差的自动补偿;实现槽下12个矿仓、12个称量斗、2条成品带、2条碎矿皮带、12台振动筛、4台给料机、1个翻板及碎焦系统的自动控制,实现自动备料和放料;可使用监控画面对上料系统设备的运行状态进行监视,对设备的运行进行软手/自动切换及手动启停设备,进行料单设定及更改等;对装料超时、放料超时、超满及设备运行故障等情况在“工艺流程画面”进行报警显示。
图2 控制系统硬件配置
(2)矿石称量斗的称量控制:当排料程序发出后,矿石称量斗闸门开,料排出。当称量值为控制值(初始时为设定值的95%)的5%时,发出料空信号并关闭闸门,当闸门关好并称空好后,振动筛或给料机开始启动。称量值到控制值(经补正)时,振动筛或给料机停机,进行满称量。若达110%控制值(经补正)时发出声光报警信号。振动筛或给料机启动ts后,还未发出斗“满”信号,就发出上卡料报警信号。
(3)矿石称量斗的排料顺序:根据预先选定的装料程序,矿石中间称量斗一“空”且闸门关好,槽下翻板翻到位,矿石皮带机启动后,开始排料。
排料顺序:球团、杂矿单装时按料单内所填仓号的先后顺序进行排料(矿石称量斗排料多不超过三个)。混装时先排一斗的球团或杂矿(排料单内球团或杂矿对应仓号的个斗),再排小烧或振大烧。当前一个称量斗闸门开启,发出空信号后,发出下一个斗排料指令。排料斗的闸门开到位延时ts后,还未发出斗“空”信号,则发出下卡料报警信号。
(4)矿石中间称量斗称量控制:矿石中间称量斗称量控制分三种情况:
● 大烧结矿振动筛供料:当矿石中间称量斗“空”,闸门关好,设定好则发出同侧烧结筛运转指令,称量值达到控制值(初始时为设定值的95%)时,烧结筛停机,称量结束。称量值达110%控制值时发出音响报警信号。振筛启动延时ts后,还未发出斗“满”信号,则发出“上卡料”信号。
● 矿石皮带机供料:当矿石中间斗料一“空”,并且闸门关好,槽下翻板翻好,便发出矿石皮带机运转指令,当排料斗均放过料后,发出矿石中间斗装好信号,并发出皮带机停机指令。
● 矿石皮带机和大烧结振动筛完成混装:当矿石中间斗料一“空”,并且闸门关好,槽下翻板翻好,便发出矿石皮带机运转指令,当相应的一个矿石排料斗放过料后,发出大烧结振筛启动指令,发出皮带机停机指令。当称量发出“满”信号时,发出矿石中间斗装好信号。
(5)焦炭称量控制:当焦炭称量斗一“空”,闸门关好并设定好后,发出焦炭振动筛运转指令,开始称量,称量值达到控制值时(初始时为设定值的95%),发出振动筛停机指令,称量结束,若达110%控制值时,发出报警信号。振筛启动延时ts后,还未发出斗“满”信号,则发出“上卡料”信号。
3.3 炉顶控制功能设计
(1)炉顶控制范围及内容
● 炉顶上至料罐下至探尺各设备的顺序控制。
● 无料钟串罐式炉顶的装料及均压、放散控制。
● 料流调节阀开度(γ角)、布料溜槽倾动角(α角)、布料溜槽旋转角(β角)的控制。
(2)炉顶装料控制:上次布料结束且下密阀关到位后,程序发出申请装料信号,料车开始装料,受料斗满且料罐空,放散阀打开,在放散过程中,一旦打开放散阀并料罐内压力等于大气压力,则认为放散ok。放散ok后开上密阀,上密阀开到位后开柱塞阀,料车开始下料。延时一定时间后柱塞阀关闭,关放散阀,关上密阀,炉料装入料罐中后开均压阀开始均压。这时受料罐发允许料车上行信号。
(3)炉顶布料控制:料罐满且上密关到位后,程序发出申请布料信号,此时探尺探测到设定料线后提探尺至零位。均压好后关均压阀。探尺提到零位后开始转动α、β。布料溜槽倾动的正常工作角度范围是13-53度。就地操作可以使溜槽倾角达到70度以便于拆卸溜槽。当溜槽倾角小于12度或大于54度时,溜槽停止移动和转动并发出报警,只有在报警清除后才可以继续移动。一旦降下探尺或探尺在高炉中时,溜槽倾角如果大于45度,必须锁定溜槽。为了使溜槽的定位精度达到±0.2度的要求,在程序中对溜槽的倾动速度进行处理,溜槽开始以大速度倾动,当与目标位置只相差2度时,以大速度的三分之一倾动,这样可以jingque的定位到目标位置。溜槽的旋转由变频器驱动的交流电机驱动。正常情况下溜槽不停的旋转,如果溜槽的倾角位置达到了上限或下限,或者探尺在炉内时溜槽倾角大于45度,溜槽要立即停止旋转并报警。溜槽每4小时改变一次旋转方向,这样可以确保溜槽磨损平衡。plc根据炉顶料单和槽下传送来的布料代号给出料流调节阀γ的设定开度,控制料流调节阀打开到设定开度开始布料,当接受到料罐清空信号,料流调节阀完全打开才能关闭。清空信号由射线检测和plc的定时器共同完成,如果在料流阀打开后规定的时间后发出清空信号,则认为料罐已经清空,如果在规定的时间之前发出清空信号则认为是料罐堵塞,plc将发出报警信号,该信号一直保持,只有料流阀完全打开并且确保料罐完全排空后才能解除。料流阀关闭后关下密阀,降下探尺检测料面,布料结束。
4 结束语
本文讨论了基于施耐德昆腾系列plc的高炉矿槽炉顶上料系统的控制系统的控制情况。控制系统已经在高炉生产得到了实际应用,满足了现场的生产工艺要求。操作画面简单方便,通过对料单设定画面的修改可以实现对矿石、焦碳配料参数及布料参数的设置与修改,并显示工艺所需要的数据。操作方式灵活,操作方式有自动、画面手动和现场就地操作。在该系统中,plc充分发挥了其配置灵活、控制可靠、编程方便和可现场调试的优点,给整个系统的稳定给整个高炉生产带来了较大的作用。
1 引言
近几年来,随着国家宏观经济政策的调整,煤炭作为焦化厂主要的原材料,其价格一直居高不下。由于电煤供应日趋市场化、多元化,造成煤质波动幅度增大,煤种杂、入炉煤质控制难度加大,使发电厂锅炉燃煤偏离设计煤种,锅炉稳定燃烧受到破坏,引发的设备缺陷明显增多,严重影响了锅炉安全经济稳定运行。火力发电行业的煤炭逐步全面推向市场,价格也随之开放,煤炭的费用在火力发电厂的成本已占70-80%的份额。对煤炭的管理,已也引起火力发电行业的高度重视。煤的经济性成了国内各燃煤企业重点考核指标。
为了考评燃煤经济性,对入厂煤进行采样后以质论价几乎成了所有厂家的常用的控制措施。从80年代起,入炉煤采制样设备得到了高速发展;进入90年代,入场煤采制样设备(汽车入场煤,火车入场煤)从无到有,从不完善正走向定型和完美。自动化技术在入场煤采制样设备的广泛运用,极大地把工人从繁杂的体力劳动和不安全的工作环境中解放出来,显著地改善了工人的工作环境和提高了工人的工作效率。
2 系统概念设计
现代焦化厂往往由多个供应商供应全厂的各种用煤,供应商多数采用汽车进煤。jingque的确定煤的发热量、水份、灰份和其他杂质尤其重要,因为是很小的差别也有可能在一段时间内造成很大的损失。采样机也是煤矿企业用于商品煤采样的机械,要求从煤流中,火车,汽车,船上以及煤堆上采取煤样,加以分析,以确定煤的各种特性,用此分析结果确定合同价格,并根据要求将采样机进行了运动动作分析,对其进行了整机的结构设计。在设计采样时,不但注意了如何使物料连续通过采样设备,注意了如何保持水分不损失,并且还注意了如何避免粉尘的散失,在设计采样装置时要充分考虑到以上因素。
本文介绍的系统的采制样过程全自动化,能自动完成汽车定位、随机选择取样点,自动样本采集、缩分、制样和集样。根据有关汽车采样的现场条件、技术要求,并参照国家gb475-1996《商品煤样采取方法》及gb474-1996《煤样的制备方法》,制订汽车采样设计方案介绍如下:
2.1 工艺流程
(1) 汽运煤场采制样过程可以分为:汽车自动定位--随机选择取样点-采制样-在线分析-集样。
(2) 入场煤采制样设备的工艺流程通常是:自动取样--破碎--缩分留样--余煤处理。
当运煤车辆进入取样区域后,汽车定位系统对车辆所有位置进行探测,得到汽车车厢在取样区域的平面坐标参数,并传递给主控计算机。主控计算机根据车厢参数,自动在车厢区域内生成数个随机取样点。主控计算机控制机械取样装置在指定的取样点取样,并控制制样设备自动完成煤样的粉碎、缩分和集样,在线灰分分析,随机自动装罐。汽车自动化采样机是对汽车运煤进行采样、制样的机电一体化设备,该装置由plc控制,准确定位,具有结构紧凑,设计新颖,性能可靠,操作简便等特点。其工作原理:汽车机械化采样机安装于运煤车经过的路旁,采样器由大车行走部分、小车行走部分、采样器部分等组成,大、小行车携带采样器样轨道纵向及横向运动,采样部分实现采样器上下运动,从而实现任意点、任意位置、任意量采样。可与煤质分析仪相连,实现煤质控制。此工艺流程对于火车采制样设备基本没有问题。
2.2 工艺瓶颈
对于汽车入场煤采制样设备,在缩分留样环节存在有瓶颈,制约了汽车采样的发展;目前的采制样设备主要是靠操作人员判断汽车煤属于哪一个煤矿,选择留样的集样瓶。就存在以下问题:
(1) 选择集样瓶时,操作人员容易误操作,煤样的真实性不能得到保证。
(2) 集样瓶更换频繁,增加了工作人员的劳动量。
(3) 汽车采样机的缩分留样能力有限(集样瓶工位数一般为6或8个),缩分留样的煤量(缩分比)大或汽车运煤量大时,致使集样瓶更换频繁,增加操作人员的工作量;缩分留样的煤量(缩分比)小时,不易反映单车煤的质量,真实性差。
(4) 采制样设备只能采制出煤样,不能及时的反馈出煤样的质量(化验结果滞后),在“扣吨”问题上焦化厂与煤矿易发生扯皮;且增加了化学分析的工作量。
(5) 焦化厂要求采制样设备与信息管理系统数据实时共享,在线实时监控,传统的工作方式很难做到。
2.3 概念设计
为解决以上问题,我们根据多方考察和研究,依据以下原则进行设计:
(1) 实用性:以解决现实问题为主,坚持为业主决策服务,又为经营管理服务,为生产建设服务。
(2) 先进性:采用成熟的技术,兼顾未来的发展趋势,及量力而行,又适当超前,留有发展余地。
(3) 可扩展性:系统便于扩展,以保护前期投资的有效性和后续投资的连续性。经济性:以节约成本为基本出发点,建立一个运行可靠、满足公司实际需求的采制样操作系统。
(4) 易用性:系统操作简便、直观,以利于各个层次的人员使用。
(5) 可靠性:确保系统可靠运行,在关键部分应有安全和容错措施。
(6) 可管理性:系统从设计、器件、设备等的选型都必须考虑到系统的可管理性和可维护性。
(7) 开放性:采用符合的产品,保证系统具有开放性特点。
(8) 实时性:数据实时在线监察,实时现场工况监控,数据库共享,分析结果分权限浏览。
根据以上设计原则,并综合考虑煤场的工作模式后,在缩分留样环节前增加了灰水分析仪(能够测量灰分、水分、发热量),使其工艺流程修正参见图1所示。
图1 工艺流程设计
这种灰水分析仪与采制样设备相结合的工作方式既解决了传统工作方式不易解决的问题,又能快速地将入场煤的灰分、水分、发热量分析出来,减少了焦化厂煤质分析人员的工作量,提高了工作效率。
3 系统组成
灰水分析仪与采制样设备相结合的采样机已成功地在河南某焦化厂投运。此系统完成一个采样周期共计136秒,其中从汽车车厢内取样时间为36秒,在线分析时间为100秒。系统控制原理结构框图如图2所示。
图2 控制原理框图
现场检测仪表对生产中各个参数自动、连续地进行检测,将信号反馈给现场plc和上位机,并在上位机显示器上显示出来;plc和上位机比较程序中设定的工艺参数,自动地调节某台设备的工况(启动、停止或调速)及存储煤质数据,从而自动满足生产过程需要。
3.1 系统构成
(1) 上位机。本系统采用pii的研华工控机,捷瑞公司的rs232转rs322/485工业通讯卡,数据库采用与焦化厂信息管理系统相一致数据库visual foxpro6.0,采用视频捕捉卡,图像分割器。闭路监控系统。
(2) 可编程控制器(plc)。采用西门子公司的plc系列cpu224为控制核心,另有两块i/o模块,一块输出模块,一块8输入的模拟量转换模块,用于转换在线分析仪检测到的数据,internet通讯模块。各种开关量及模拟量输入到plc后,由上位机发出执行指令,plc经过运算后,将其运算结果输出到电机、电动滚筒、电动推杆等执行机构。
(3) 上位机与plc通信:解决此问题,我们采用了北京亚控科技发展有限公司的组态王6.0作为组态软件,通过plc编程口与上位机通信。组态王6.0是运行于microsoft bbbbbbs nt / xp 中文平台的全中文界面的组态软件,采用了多线程、com组件等新技术,能够实现适时多任务,具有开放的程序接口,可以自由地存取数据,且与各种关系数据库能够完整连接。
(4) 汽车刷卡机。本刷卡机采用了与汽车衡相同型号的刷卡机lk480,用于自动识别不同煤矿的煤炭和车号,以保证煤质分析结果与对应煤车的一致性,便于焦化厂管理。
(5) 灰水分析仪。此分析仪在0.5分钟以上能将灰分、水分、发热量分析出来,且其精度误差小于0.5%,我们综合考虑后采用了清华大学研制的hsfx-2000型灰水分析仪。
3.2 运行方式
本系统的操作完全由上位机完成,操作人员运用鼠标点击要操作的对象,上位机通过组态王6.0将指令传递给plc,plc经过运算后决定要进行的工作。系统设置了两种工作方式:手动运行,自动运行。
(1) 手动运行:操作人员分别点击对应的设备,即完成设备的启停、分析仪的设置等,此工作方式各设备间无连锁,主要是调试和维修时使用。
(2) 自动运行:此方式是正常工作的运行方式。设备启动完成后,当需要采样时,操作人员只需点击“采样”按钮,采样机就自动读取汽车ic卡的信息,产生随机采样点,煤样破碎后经过自动分析,上位机自动将分析结果与对应的ic卡信息存入数据库,供焦化厂信息管理系统调用。煤样合格时,集样瓶内不留煤样;煤样不合格时,系统自动缩分留样,以供焦化厂化验和检测。
3.3 系统功能
系统具体功能和特点有:系统根据汽车司机的ic卡能够自动识别车辆的来源,并将卡的数据与煤质参数对应地存放在一起;在采样区域内自动产生随机采样点,并自动完成采样;对煤样自动进行灰水在线分析;根据煤质参数的结果自动决定是否留样;将每个煤样的煤质参数转换成焦化厂信息管理系统所需的数据库格式文件;系统提供了详实的采样纪录供操作人员查询和打印;系统具有多种连锁保护逻辑;若系统出现故障时,自动打印出故障说明,并自动停车等待故障解除;当操作人员误操作时,系统将弹出丰富的连锁保护界面供操作人员参考;全部系统动作可根据plc指令,按设置的程序自动完成,依赖plc实现检测、程控、报警、指示、联锁及解锁等功能,并实时检测来自设备的各种位置,控制系统包括供电、保护、控制及控制柜(可选用工控机或触摸屏,能够实时生动地显示设备运行状况及实现故障报警,并实现自动与手动之间的操作切换),出现问题,发出报警信号,整个系统由上而下地程序关机,以防设备及联带事故的发生;螺旋采样头垂直安装在三维移动的载体上,升降对位灵活,可实现表层弃料,任意的深度断面取样,操作简便,符合国家采样标准。该采样头螺旋杆底部,装有合金刀头,可破碎或拨开大块物料及其它异物,以保证取样的顺利进行及安全性,尤其适用于北方冬季煤层结冰状况下的采样。采样头直径按煤样含量超过5%,按大粒度的2.5-3倍要求设计;性能优良的环锤式破碎机,其锤头可换,出料粒度可调节,对不易破碎异物有排出处理机构。破碎出料粒度不大于6mm的不低于95%,保证来煤水份达20%时不堵煤;旋转式缩分器,缩分头的动作由plc设定,该缩分器设计精巧,分样斗采用不锈钢材制作,驱动功率小、故障率低。其缩分可调,精度高、外形尺寸小;由于在次级制样系统中采用了喂料皮带输送机,使物料在运动中均匀地进入下一级设备,保证了破碎,环节从容地进行,有效避免了因喂料不均匀造成的堵料故障。避免水份散失及样品的污染。喂料机采用全密封处理,避免人为因素干扰。为提高采制样设备的过程管理水平,为适应用户对计算机网络管理的需求,自动化采制样装置可选用了计算机监控管理系统;工控机与plc实现双向通讯,可通过工控机输出设备程序开启指令,并可根据需要通过工控机直接干预或修改采制样程序及有关参数。工控机与皮带秤称重仪表通过rs-232/485接口电路实现数据通讯,并接收各终端元件的开关量信号,通过工控机屏幕上“动态工艺流程图”软件监测跟踪现场工艺状况,并实现对各类数据的监测、整理及输出打印;该系统可作为一个网络站点,与上位机通讯,实现用户的局域网络管理。采样系统可作为一个子系统或一个网络结点,纳入到整个工厂局域网中,plc与计算机联网后,再使用相应的编程软件(如梯形图或流程图)及其它语言编程,比较方便;可简化系统布线、维修,并提高工作的可靠性;可对现场智能装置进行管理,充分发挥这些装置的效益,推进生产自动化、智能化;一次胶带输样机:一次喂料机为全密封结构,料门开度可方便的调整,可将子样均匀地输入破碎机;破碎机:破碎机为环锤式破碎机,其锤头可更换,出料细度可调节,对不易破碎异物有排出处理机构。破碎出料细度可达6mm(不少于95%);二次胶带输样机:理论上破碎机的输出是不均衡的,直接对其输出的子样进行缩分,不可能保证标准要求的缩分精密度,必须配置二次胶带输样机;由于其转速可无级调整,且又有可调闸门,故能严格做到子样均匀流出,做到合理缩分;缩分器:为直线式摆动缩分机构,维护量小、外形尺寸小,缩分头的动作由电子定时器设定,缩分比可调,精度高、范围大,结构设计合理,煤样收集管及缩分头采用不锈钢制造,不会产生堵料;自动换桶机(电动推杆驱动):有“园盘自动换桶”和“环链式自动换桶”供用户选择,所配样桶(取样器)密封性强,使用方便;余煤回收机:采用斗式提升机(电机驱动),出料方式有二种:分散式:配小料斗可摆动溜槽(电动推杆驱动),使余煤回至下一汽车车厢内;集中式:配大料仓(5t),使余煤集中储存,每班一次,放入回煤车;机架及操作室:钢结构,包括机架、导轨、维护平台及顶棚等,其中部分制样设备(如破碎输样、缩分及换桶机)可按用户要求密封在单元室内(二次制样单元)。对于采用双头横移式采样车,实行自动控制时,将省去上部操纵室,将控制台设在地面工作间内;为保证系统可靠、jingque运行,本系统的构成设备均设置检测元件,可编程控制器定时检测各设备的运行状态,当发现不正常状况时,plc可自动采取补救措施,报警无效时,plc自动顺序停机;现场的闭路监控系统带有硬盘存储系统,调动值班人员可随时观察现场取样工作,还可查询历史工况。
采样机自动运行操作界面如图3所示。
图3 采样机自动运行操作界面
4 研发评估
采用带煤质在线分析的采制样机有以下优缺点。
4.1 系统优点
从采制样到化验分析,完全是自动完成,排除了人为干扰因素,保证了样品的真实性。正常工作情况下,从采制样到分析煤质结果只需一个工作人员,节省了劳动力。采集的煤样不必经过焦化厂化验室化学分析,其分析数据自动存入焦化厂信息管理系统的数据库,使数据在一定权限内共享,方便管理、查询和打印,减少了焦化厂二次制样和化学分析,提高了工作效率。采样机使用刷卡制,避免了漏采的可能性,便于焦化厂对车辆的管理。采样机采用plc与工控机共同控制的方式,维修量小,可靠性高。煤样分析数据自动存入信息管理系统的数据库,方便焦化厂其他工作人员的查询,提高了信息的快速性。采用plc控制,运用成熟的自动控制技术,使采样机的采样头能在指定的三维空间内任意一点采样,自动完成旋转,下降,采样,上升,回位,卸样,破碎,缩分,分矿点收集子样、弃样等工作。该机器适应国内各种运媒或散状矿石的车型。该机的采样头采用安阳鑫达自控科技有限公司的专利产品,具有良好的水份适应性,公司自行研制的防止破碎机内腔粘煤和堵塞装置(已申请专利)应用于制样系统的破碎机,对提高制样系统的水份适应性起到了关键作用目前国外同类产品的水份适应性在12%左右,国内同类产品的水份适应性在10%左右,而我公司产品的水份适应性达到16%。
4.2 系统缺点
目前国内的灰水在线分析仪发展还不十分完善,还主要依靠国外进口,造价较高,一次性投资大。由于灰水分析仪需要煤质的静态和动态的标定,且此工作较繁琐,调试标定工作需反复进行。
5 结束语
原煤自动采制样装置是针对燃煤焦化厂对控制入厂煤的质量而研发的产品,采制样装置通过精心设计,具有结构简单、性能可靠、采样精度高、对煤中的难碎异物具有很强的适应能力等特点。采样系统的设计、制造完全符合有关国家标准和,可保证采样数据准确性,满足商业结算或正平衡计算发电煤耗的要求。该装置主要用于焦化厂、燃煤电厂及类似以煤作燃料的大型企业,也可用于冶金企业矿粉类采样。采用高效的自动化设备是提高我们工作效率的必由之路,也是社会发展的必然趋势。随着我国经济的发展,灰水分析仪的完善,计算机控制和灰水分析仪与自动化采制样设备的结合将是采制样设备的发展方向