西门子模块6ES7222-1BF22-0XA8技术数据
1 引言
锅炉在运行过程中,其各部分受热面都会积灰,积灰不仅会影响受热面管壁的传热效果,严重时还会形成结焦,影响受热面的寿命,甚至损坏受热面,在大型锅炉上均设有吹灰器,用来定期清扫锅炉水冷壁、过热器、再热器、省煤器和空气预热器等受热面上的积灰和结渣。吹灰器可tigao主蒸汽出温度,降低锅炉排烟温度,在一定蒸汽压力进行吹灰,使结在锅炉过热器、省煤器内壁的结焦及结炭得到清除,恢复传热系数,tigao效率1%左右。
大型锅炉使用多个吹灰器,要求顺序操作,采用继电器控制锅炉吹灰器,故障率高,可靠性差,维修困难,而采用PLC可靠性高,控制灵活,易于实现。
2 吹灰器分布控制方式的比较
吹灰器分布控制方式分为独立式分布控制和集中式分布控制。
图1 吹灰工艺流程图
(1) 独立式分布控制方式
每个吹灰器都有各自的正、反转接触器,过载,前、后行程开关,由于各有自己的控制系统,单个吹灰器的投运不受其它吹灰器是否运行的影响,控制灵活。但锅炉的吹灰器需使用多个接触器、继电器、电流变送器等元器件及输入输出通道和卡件、电缆,使得控制装置复杂;
(2) 集中式分布控制方式
若干吹灰器组成一组,每组吹灰器共用一组正反转接触器和过载继电器,而每个吹灰器又各有一个接触器和前、后行程开关,所有前行程开关合并为一个信号,所有后行程开关合并为一个信号,输入可编程控制器。
采用集中式分布控制方式可以节约多个器件、卡件、大量电缆,节省控制柜空间。但由于一组吹灰器用一对方向接触器和一个过载继电器,一旦方向接触器出现故障或过载继电器动作,整组吹灰器就不能工作。又因行程开关信号合并在一起,若行程开关故障或信号线短路,不容易确定哪个吹灰器,需逐一检查。故吹灰器在运行前必须保证无其它吹灰器在运行,即只能投运一台吹灰器,降低了效率。
比较分析吹灰器的两种分布控制方式的特点,综合独立分布控制方式和集中分布控制方式的优点,将多台吹灰器分成若干组,每组采用集中分布控制,把各组的母管从系统母管中引出,且尽量靠近总管压力控制器站,有助于在投运多台吹灰器时减少压力损失。实际应用中,将吹灰器分为左右两侧,同侧吹灰器公用一个前行程开关信号和一个后行程开关信号;因长吹和短吹的电动机功率不同,在电气控制上又把每侧分成长吹和短吹两组,每组公用一对方向接触器和一个过载继电器。这样既节省了投资成本,又灵活控制,tigao了效率。
3 锅炉吹灰器的PLC控制
锅炉的吹灰装置有8台吹灰器,吹灰系统采用集中式分布控制,选用FX2-64M型号的PLC,要求实现手动和自动控制。
接通电源后,若将转换开关置于手动位置,就可对单台吹灰器遥控操作或就地控制。当吹灰管路压力正常和疏水端温度高于设定值时,将转换开关转到自动位置,吹灰器就按事先编制的程序,逐台投入运行。在运行中,若发生电动机过载、疏水端温度低于设定值时及管路蒸汽压力低的故障时,会自动停机。故障解除后,按故障复位按钮才能继续运行。如果初始状态的管路蒸汽压力偏低,或者疏水端温度偏低,或者吹灰器不处在初始位置,无论处于手动或自动位置,吹灰器均不能运行。
(1) 操作程序工艺流程
可编程控制器的输入量为开关、限位开关、热元件等,输出量为电磁阀、接触器、指示灯。吹灰器的操作程序工艺流程如图1所示。
(2) PLC控制系统的程序设计
锅炉吹灰器采用集中式分布控制,8台吹灰器的前、后行程开关信号分别合并为一个信号,接PLC的输入,用一对方向接触器控制吹灰器的前进和后退,每一个吹灰器都由其本体接触器控制它的运行,用一个热继电器控制吹灰器电机的过载。系统设有管路蒸汽压力、疏水温度检测、选跳吹灰器运行输入信号。PLC的输出信号接接触器线圈,PLC输入输出接线如图2所示。
图2 PLC输入输出接线图
设计程序时将输入信号送移位寄存器,经过定时器的作用,实现移位脉冲的输入,使吹灰器顺序投入运行,吹灰器之间互锁,只有当上一吹灰器运行结束,退到位后,下一吹灰器才能运行。自动停止按钮使移位寄存器停止移位,顺序复位按钮使移位寄存器复位,故障排除后,按下故障复位按钮,移位寄存器恢复功能。
4 结束语
采用PLC实现锅炉吹灰器的集中式分布控制,节约了接触器、继电器、卡件、电缆线等器件和材料,简化了控制线路,节省了装置空间。减少了故障率,tigao装置运行的可靠性。
1 引言
锅炉是工业生产和人们生活中使用广泛的设备之一,锅炉水的处理工作,对确保锅炉安全、经济运行、节约燃料有着重要的意义,它是锅炉运行中的一项重要的技术基础工作。如果锅炉给水没有经过水处理或水处理不当,不但会缩短锅炉的使用寿命、浪费燃料,甚至会造成重大设备事故和人员伤亡。锅炉使用单位必须因炉、因水制定锅炉水质标准,并根据实际情况选用合适的水处理工艺。目前锅炉水处理系统中的工艺流程设计中使用广泛的是离子交换法(化学处理法)和渗透法(物理处理法)。传统的水处理过程多为继电器控制或人工操作,系统故障多,工人劳动强度大,运行成本高,对运行可靠、的控制系统需要迫切。本文介绍的是基于化学处理法工艺的水处理过程智能控制系统。
2 化学水处理工艺简述
本系统受河北某企业委托进行设计和实施,水源为水库地表水,设计供水能力为40T/h,系统主要设备:浮动床机械过滤器2台,逆流式固定床阴、阳离子交换器各2台及除碳设备和废水处理池等。通过过滤器去除原水中的悬浮物,阴、阳床去除原水中的各种离子,废水通过酸碱中和达到排放标准后排放,并通过检测相关工艺参数判断过滤器、阴床、阳床是否失效并自动进行再生处理,一般情况下两套设备并列运行,供水量富裕时一套设备再生完成后处于待机状态,在另一套设备失效(水质不合格)需再生时自动投入运行,两套设备共用原水供应、酸碱计量、除盐水储存,工艺流程简图如图1所示。
图1 工艺流程简图
2.1 逆流式固定床离子交换器的基本操作和工艺过程
(1) 交换过程
水经过进水装置均匀配水后,以一定的流速,自上而下地通过一定高度的树脂层,水中离子和树脂中的可交换离子进行交换,使出水符合要求,经出水装置送出。当出水水质超标后,应停止运行。实际上是交换器的运行过程。
影响交换器运行的主要影响有:树脂层的高度;交换速度;树脂的工作交换容量。
(2) 反洗过程
在交换器运行失效后,需对树脂进行反洗,使压实的树脂层充分膨胀,保证再生的彻底,洗掉树脂上部交换时截留的下的杂质。
小反洗:反洗水从中部装置进入,并从交换器顶部排出,反洗中排以上的压实层及中间排水装置上污物。liuliang控制在,时间10-20min,洗到水清为止。待10-20运行周期过后再进行大反洗。
大反洗:反洗水从底部排水装置进入,使之从下而上通过树脂层冲洗到出水清晰。
(3) 再生过程
当出水水质超标后就要再生。即用一定量的适当浓度的再生剂,以一定的速度从交换器底部自下而上与失效树脂层进行接触,使其恢复交换能力。时间为30min左右,上升liuliang为。
(4) 置换过程
在再生液进完后,继续以再生过程的同方向进软化水,使后部分再生液完全通过失效树脂层。时间为30-40min。
(5) 小正洗
置换结束后从交换器上部进水,中间排水装置出水,以清洗渗入压实层中及上部的再生液。时间为10min左右,liuliang为。
(6) 大正洗
小正洗结束后,关闭中间排水装置,开下部排水阀,用按顺流方向冲洗树脂层到出水合格。liuliang为。
2.2 过滤器工作过程
主要包括:过滤、气洗、正洗和反洗等步序。
3 系统主要检测、控制要求
根据生产工艺要求,系统控制以时间顺序控制为主,通过检测过滤器出水liuliang和进出水差压值、阳床的钠度和阴床的电导率控制整个生产过程的正常制水和再生,根据污水池的PH值控制加酸加碱量以保证污水合理排放。整个水处理系统控制均由PLC来完成。
监控水处理系统整个生产过程,包括各项水质参数、设备的运行情况,检测控制各个阀门的启闭状态,各运行步序中liuliang控制通过PLC的AO控制水泵变频器来控制,自控系统通过上位机的管理功能,实现数据的记录存档、报表打印等。
4 系统选型及组成
基于系统以上检测及控制要求,我们可以看出:系统控制以时间顺序控制为主,开关量输入输出点比较多,如果选用DCS系统来完成势必造成投资浪费,随着PLC自身技术的发展,其灵活的系统扩展与组成,通讯功能的完善和tigao以及优越的性价比,与IPC的方便连接,使得PLC的应用领域越来越广泛。本系统设计选用PLC为主完成数据采集和控制功能,由工控机通过组态软件来完成画面组态和监控功能。结合国内外市场自控产品现状并着重考虑系统的实用性和经济性,自控系统采用进口和国产设备相结合,PLC选用美国莫迪康的Premium产品,liuliang计、液位计、电导仪、钠度仪、PH计等传感器选用优质国产件,组态软件采用国产组态王,以便与锅炉控制系统互连。系统组成框图如图2所示。
图2 系统组成框图
5 系统功能
(1) 数据采集
开关量数据采集:对系统内部各种阀门、水泵、风机等设备的运行、停机等开关量信号进行采集,通过I/O接口送入PLC,作为设备状态的参数,以便PLC执行控制。
模拟量数据采集:采集水温、水质参数、liuliang、水位、PH值等模拟量信号。
(2) 自动控制
本系统通过PLC和IPC实现对水处理系统各生产工艺的自动控制。可在上位机对主要阀门的启闭、设备的启停进行操作。系统仍保持就地操作功能,该功能作为设备调试、故障检修时使用,能通过现场手动/自动开关来进行切换。
(3) 设备智能化控制
通过软件优化设计能及早发现事故或故障的征兆,并及时提出处理预案。
(4) 实时、历史数据处理和报表生成
数据库采集设备运行状态、生产情况、水量、水质等数据,对实时参数进行动态显示。历史数据可按曲线方式显示。并能自动生成报表、直接支持Excel软件。
(5) 画面显示
在计算机上能显示整个系统的工艺结构、检测参数及报警画面。
(6) 报警和事故处理
对设备参数超限、水质参数异常以及设备运行状态失控进行报警以及提示故障设备检修方法,便下操作人员和维修人员及时处理。在发生紧急故障或报警预定时间内无应答时,将诊断结果进行分析,并执行处理事故程序。
(7) 报表打印和管理
可管理整个水处理系统,对生产工艺进行24小时监视,可按需记录并打印生产工艺过程报表,可选择班报表、日报表、月报表。
(8) 系统组态和参数设置
根据实际需要,技术人员可通过密码进入系统在线修改、参数设置及系统组态。
6 结束语
该系统经现场使用已近一年,使用情况良好,得到用户的肯定和好评,使我们感到在以时间顺序控制为主的系统中PLC具有别的控制器无法比拟的优越性。
1引言
凌钢1#高炉热风炉系统由3座内燃改造式热风炉组成,其煤气系统、助燃风系统、冷风、热风混风系统的切断阀采用电动和液压传动阀门,设计送风温度为1100℃,采用分离式热管余热回收数量。
热风炉控制系统是高炉自动化系统工程中基础自动化子系统,它采用美国A-B公司的PLC-5可编程控制器,Ethernet高速数据工业局域网和OS监控系统。热风炉自动控制系统由仪控和电控两部分组成。仪控主要完成工艺生产过程参数控制和调节阀的自动调节及控制。电控主要完成换炉自动控制。2自动化系统组成
PLC-5系列可编程序控制器是美国A-B公司在20世纪80年代后期开始推出的产品,是一种既可进行顺序控制和程序控制,又可进行闭环过程控制的的半型可编程控制器。它不仅具有一个功能强且完善的指令系统,易于扩展、具有模板插件型结构。适用于各种被控对象与生产过程。
多平台开发软件,在高层编程软件支持下,可方便对其梯形图编程,顺序功能流程图编程,实现模块化编程,工作站采用多用“20”彩色图形工件站,通过Ethernet的工业局域网,实现对生产自动化过程监控和管理,见图1。
图1 系统框图
3主要控测项目和控制
热风炉主要是为高炉提供稳定高温的热风,主要检测项目有拱顶温度、废气温度、换热器助燃风出/入口温度、换热器废气入/出口温度、煤气和助燃风压力、liuliang、冷却水压力、liuliang等。控测信号进入PLC后进行线性化计算,气体liuliang温度与压力补正,并在上位工作站OS上显示所有数据。
(1) 热风炉送风自动控制
热风炉是蓄热式的,它交替工作,有“燃烧”、“送风”和“闷炉”(过渡状态)三种状态。状态的变换是根据工艺、设备和安全的要求。热风炉控制系统为两烧送的送风制度,送风温度由送风炉出口的不同风温混合而成。当送风温度低于设定值,调节冷风调节阀开度。当送风温度高于设定值时,还必须渗入一定的冷风。
4换炉控制系统
热风炉换炉可以有“全自动”(定时换炉,三个热风炉顺序转换)、“单炉自动”(只该热风炉自动转换状态,但要操作台主按相应按钮起动)、“遥控手动”(操作台上单个阀控制,此时仍保持阀间联锁)、“机旁手动”(只控修时使用,各阀除联锁)等四种操作方式。
(1) 全自动操作方式
在3座热风炉工作时,可选择两烧一关变风量,操作人员在OS工作站上设定换炉时间,周期地进修全自动操作。例如,由“燃烧”转为“送风”的顺序为:关闭煤气、空气切断阀和燃烧阀→延时若干秒后关闭烟道阀(至此各阀关闭而转入“阀炉状态”)→开启冷风旁通阀(进入灌入冷风)→延时若干秒后开启热风阀→打开冷风阀→关闭冷风旁通阀;而“送风”转入“燃烧”的顺序为:关冷风阀→关热风阀→开废气阀(放去炉内延留废气)→延时若干秒均压后开烟道阀→关废气阀→开煤气切断阀、燃烧阀(煤气调节阀微开若干秒,点火后全开)→开空气燃烧阀。各阀顺序动作,具有一定联锁,特别须防止有关燃烧各阀未关时开启送风有关各阀或其动作;
(2) 单炉自动操作
操作人员在OS工作站上调出各热风炉单炉自动操作通;根据热风炉初始工作状态选择日的工作状态。例如:焖炉→燃烧、燃烧→焖炉,焖炉→送风,送风→焖炉、送风→隔离、燃烧→隔离等多种转换状态,各阀门按规定的程序动作;
(3) 遥控手动
操作人员在OS上位工作站通过功能键选择联锁手动操作方式,根据热风炉初始工作状态选择要转换目的工作状态。在热风炉值班室OS上位工作站上对各阀门进行单个开、关遥控操作。为确保人身和设备安全,所有阀门的开、关都是在满足必要联锁条件下执行;
(4) 机旁手动
使用现场控制箱上的按钮,可单独操作所有阀门设备,各阀门间的联锁关系全部解除,只是在发生故障和阀试检修时使用。
上述操作均在热风炉值班室OS上位工作站上,操作十分方便,画面清晰。上位机监视操作画面,方便于值班人员检查、操作热风炉生产工况、事故报警、诊断等。
监视画面根据工艺生产工况,包括有:热风炉工艺流程总貌;热风炉单体工作状态画面;热风炉换炉顺控画面;热风炉工艺参数:温度、压力、liuliang等数据显示画面;工艺参数趋势记录画面;事故报警记录画面等。