西门子模块6ES7223-1HF22-0XA8品质好货
2 系统软件设计
2.1 设计要点
该系统软件设计的重点为:1)准确配置高速计数器;2)位置控制器的允差设计,允差的选择应尽量小以tigao伺服系统的控制精度,在满足系统定位精度的前提下,允差的设计上还需要考虑于机械结构定位的分辨率,以免设置值过小机械结构控制不到位而引起驱动电机反复转动调节,往往需要现场标定;3)初始位置的jingque标定,需要注意的是初次标定各档位位置时应使用手动控制方式,并且要将机械限位开关状态接入PLC。由于采用增量式光电编码器,计数器当前值要存在PLC的掉电可保存寄存器MDl4中。
2.2 程序设计
在程序中需要将高速计数器配置为A/B相正交输入,4倍计数速率,增计数,并使能高速计数器,将标定好的各档位位置填入相应的地址中,并且设置允差为两个脉冲,也就是说各档位的脉冲数加减2即为相应的到位。伺服系统传动装置的间隙是多样性的,并且对伺服控制的性能有影响,设置允差的目的是为了消除由于伺服传动间隙引起的系统不稳定,从而准确定位。位置定位程序的流程如图5所示。
在程序设计时除顺、逆限位和顺转、逆转的互锁程序外,重点在于如何用PLC实现多点重复定位。主要设计程序如下:
3 工程应用情况
这种设计方法被利用在某军用雷达工程的衰减器控制的4位置定位系统中,系统要求驱动机械部件在0°~360°内的4个位置往返定位,定位精度要求O.1°。在具体的设计中驱动电机选用型号为55TYD02的交流电机,编码机构选用型号为OMRONE6B2的相对式光电码盘。位置的行程范围360°对应于8 400个脉冲,则使用S7-200PLC高速计数器读入的位置分辨率为360°/8400=0.043°;根据机械结构实际标定位置允差值设置为2个脉冲,此定位系统的控制精度可达到0.86°,满足系统定位精度0.1°的要求,电机正向或反向运转一次到位,快速准确。
4 结束语
PLC适用于比较恶劣的工业环境,通过其通讯口和上位计算机实现通讯,可以使操作人员在安全的环境下实现远程控制;光电编码器构造原理简单,机械寿命可达几万小时以上,抗干扰能力强。由两者为核心构成的硬件电路实现位置控制方法适用于具有多个设置点重复定位的机械旋转控制设备,完全满足一般的工业控制要求。这种设计原理清晰、硬件需求明确、易于实现、调试维护方便,具有很好实用和适用性。上述的位置控制方法已经应用于某军用雷达工程的衰减器控制中,其控制精度可达到0.86°,满足系统定位精度0.1°的要求,设备运行稳定可靠,效果良好。
对于由伺服电机带动的旋转物体进行位置控制,通常采用套轴式的电磁旋转变压器加复杂的处理电路来实现角度的编码,再由角度编码进行位置的闭环控制。上述的位置控制多用于测角精度要求高的场合中,设备构成复杂、成本较高。在某些实际应用中,需要进行较为简单的位置定位。比如在一个由伺服电机带动的机械机构需要在360°的旋转范围内进行4个或多个档位的定位,实际应用中像建筑行业中控制阀门的大小来对给水量、水泥量、沙石量进行控制或jungong工程控制,这样的定位控制精度要求不高,采用上述的方法进行位置控制显然不够经济,成本过高。
PLC(Programmable LogicController)在工业控制中应用广泛。其高可靠性、高稳定性、友好的编程环境以及辅以触摸式人机界面,使得各种工业控制更方便直观、经济可靠。这里主要阐述了基于S7-200PLC实现位置控制方法。
1 系统硬件设计
该系统是以PLC控制器为核心的位置控制系统,包含伺服电机、光电编码器、操作及显示屏、上位计算机、伺服电机控制电路和状态返回电路。其硬件总体结构框图如图1所示。
图1 系统硬件总体结构框图
1.1 S7-200 PLC
该系统设计核心部件采用西门子S7-200系列的PLC,该系列PLC功能丰富,具有多种功能模块,可方便通过人机界面对设备进行操作和监视其状态,高版本的PLC主机拥有2个通讯端口,在使用人机界面对设备进行操作的还可通过RS-485接口和计算机实现逻辑运算及状态管理,对设备进行远程控制和监视。该系统使用S7-200PLC的一个重要的功能:高速可逆计数。光电编码器和伺服电机同轴连接,伺服电机旋转带动光电编码器产生连续的脉冲串,PLC通过输入点读取光电编码器产生的脉冲,实现高速可逆计数。例如设置高、中、低3个给水量档位并进行控制。在调试阶段应先驱动伺服电机进行3个给水量的位置标定,也就是说,高、中、低3个档位分别对应唯一的脉冲数。应该注意的是,由于采用的是增量式光电编码器,也就是说,当编码器掉电后并不能将当前的脉冲数保存。在旋转机构上还要设置2个限位开关,一来保护机械结构;二来把逆向的限位开关的位置定为零位,这样相对于这个零位的高、中、低3个给水档位从光电编码器读到的脉冲数即为这3个档位的位置。这3个位置可通过PLC编程对其控制。图2给出S7-200PLC高速可逆计数器的时序图。
图2 S7-200PLC高速计数器时序表
1.2 光电编码器
光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。这是目前应用多的传感器,光电编码器是由光栅盘和光电检测装置组成。光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,为判断旋转方向,码盘还可提供相位相差90°的两路脉冲信号。图3为在实际项目中采用光电编码器的时序图,从图中可以看出此光电编码器的相位判断角度为90°±45°;图中标识的CW(顺时针)和CCW(逆时针)可以根据实际应用在PLC程序中自行定义。图4为在实际项目中采用光电编码器的内部电路和外部引线图。
图3 光电编码器时序图
图4 光电码盘的内部电路与外部引线
1概述
在石油加工工业中,大型旋转机组是装置设备的重要组成部分,如催化裂化装置的主风机、气压机组、烟气轮机及汽轮机组等。这些机组功率大,运行条件苛刻,控制系统复杂,是化工生产中的关键设备。对这些设备在突发事故中的保护是至关重要的。现在各大石油化工企业普遍采用的是专用ESD紧急停车系统,系统结构复杂,成本高(上百万元)。针对上述情况,沈阳石蜡化工有限公司80x104t/a 重油催化裂化气压机组的联锁-自保系统采用了PLC进行系统构建,其在随后的生产过程中表现稳定,动作可靠,多次在事故状态下对机组及生产装置实行了自我保护,杜绝了恶性事故的扩大和蔓延,取得了显著的效果。
2工艺设备及主要联锁参数
在催化裂化装置中,从沉降器出来的油气经分馏塔分馏后得到粗汽油、柴油和富气,富气从分馏塔顶出来经气压机压缩后送到稳定塔,与粗汽油在稳定塔内充分互溶,得到稳定汽油。在这部分流程中,气压机是关键的设备,它的运行是否平稳直接影响着整个流程。如果气压机受到损坏,会对单位的经济效益产生极大的影响。对气压机组的保护是至关重要的。该厂80x104t/a重油催化裂化气压机组采用的是电机-气压机-汽轮机三机组,在装置开工时采用汽轮机启动机组,达到额定转速(6000转)后开启电动机,采用双动力三机组的形式,主要是为了增加机组运行的可靠性。机组的主要联锁参数包括气压机轴位移超标停车、汽轮机轴位移超标停车、润滑油压力低停车、密封油压力低停车、汽轮机入口蒸汽liuliang低停车、汽轮机背压低停车、机组转速超标停车、手动紧急停车、供电跳闸停车等,这些量都是开关量输入,其中任意一项或多项出现,都要求PLC能迅速切断汽轮机入口蒸汽速关阀和电机电源,关闭气压机入口阀,打开放火炬阀,以保证气压机及装置的安全。
3 方案的确定
自保-联锁系统是指将影响装置安全和设备安全的重要参数,如温度、压力、liuliang、温度等引入ESD(紧急停车系统)系统,由ESD监测,并以显著的声光形式进行报警,达到联锁条件时自动实行联锁保护,保障设备和装置的安全,并打印出故障原因及时间,以利于事故分析。随着微电子技术的发展,PLC产品在功能和性能指标上都得到了极大地丰富和完善,并以受到用户的欢迎。从满足工艺生产需求出发,考虑到安全性、可靠性、经济性、可扩展性等因素,采用了OMRON公司生产的CPM2AH?0CDR-A型PLC,并选用了OMRON公司的CX-Programmer软件。
4 系统构成
4.1 硬件构成(如图1所示)
其中CPM2AH自带I/O接口,可以接36点输入,24点输出,输出形式是继电器,并且通过RS232C串口与PC机1通讯。PC机1位于气压机控制室内,使用的是bbbbbbs2000操作系统,通过CX-Programmer软件与PLC通讯,实现组态、监控及事故记录功能。由于我厂采用分散控制、集中管理,要求在主控室也可以直接看到气压机的自保联锁状态。利用微软的bbbbbbs2000的终端服务功能,在主控室设置了PC机2,将气压机控制室内的PC机1作为终端服务端,主控室内的PC机2作为终端客户端,两台PC机因为距离较远,采取光纤以太网连接,在主控室内的PC机2上,可通过终端服务功能运行位于气压机控制室内PC机1上的CX-Programmer软件,对PLC进行监控及各种操作。输入、输出定义见下表:
4.2 软件设计
根据工艺要求,自保联锁的逻辑图如下:
其中,润滑油压力及密封油压力低停车采取三取二逻辑,汽轮机入口蒸汽liuliang及汽轮机背压采取二取二逻辑,以减少由于现场仪表失灵造成的自保误动情况。为满足不同的工况需要,特别设置了手动紧急停车按钮,放在操作台的隐蔽位置,供工艺人员使用。每一项自保条件动作,PC机都会按时间顺序记录下来,供事后分析。PLC系统的软件设计是依据上述逻辑关系,以梯形图方式编写后写入PLC中。在PC机中,可实现在线组态、监控,对输入、输出点可以强制状态,以满足调试、维护需要。
5 结语
本系统投入生产后,运行良好,可靠性高,程序简洁,维护方便,保证了装置的长周期运行,为工厂取得了可观的经济效益,将在今后的生产实践中,逐步考虑采用双PLC或三PLC冗余的方案,以达到更高的可靠性。
1 系统简介
为改善生产环境,沱牌公司投资清洁水技改工程并建成一座日产水2.5万顿的供水系统,分别建设了抽水泵系统、加压泵系统和高位水池。根据公司用水需求特点,从抽水泵系统过来的水一部分直接供给生产用水部门,一部分则需通过加压泵输送到高位水池,而供给生产用水部门的水压与供给高位水池的水压相差较大。高位水池距抽水泵房较远达十多公里,高位水池的液位高低和加压泵系统的设计以及如何与抽水泵系统“联动”也是较难解决的。
鉴于以上特点,从技术可靠和经济实用角度综合考虑,我们设计了用PLC控制与变频器控制相结合的自动恒压控制供水系统,通过主水管线压力传递较经济地实现了加压泵系统与抽水泵系统“远程联动”的控制目的。
2 系统方案
系统主要由三菱公司的PLC控制器、ABB公司的变频器、施耐德公司的软启动器、电机保护器、数据采集及其辅助设备组成(见图1)。
2.1 抽水泵系统
整个抽水泵系统有150KW深井泵电机四台,90KW深井泵电机两台,采用变频器循环工作方式,六台电机均可设置在变频方式下工作。采用一台150KW和一台90KW的软起动150KW和90KW的电机。当变频器工作在50HZ,管网压力仍然低于系统设定的下限时,软起动器便自动起动一台电机投入到工频运行,当压力达到高限时,自动停掉工频运行电机。一次主电路接线示意图见图2所示。
系统为每台电机配备电机保护器,是因为电机功率较大,在过载、欠压、过压、过流、相序不平衡、缺相、电机空转等情况下为确保电机的良好使用条件,达到延长电机的使用寿命的目的。
系统配备水位显示仪表,可进行高低位报警,通过PLC可确保取水在合理水位的水质监控,也保护电机制正常运转工况。
系统配备liuliang计,既能显示一段时间的累积liuliang,又能显示瞬时liuliang,可进行出水量的统计和每台泵的出水liuliang监控。
2.2 公司内不同压力供水需求的解决
为稳定可靠地满足公司内部分区域供水太力(0.4~0.45Mpa)低于主管网水压力(0.8~0.9Mpa)的要求,配备稳压减压阀来调节,可调范围为0.1~0.8Mpa。
2.3加压泵系统
由于抽水泵房距离高位水池较远,直接供水到高位水池抽水泵的扬程不足,为此在距离高位水池落差为36米处设计有一加压泵房,配备立式离心泵两台(一用一备)电机功率为75KW,扬程36米。该加压泵的控制系统需考虑以下条件:
(1)若高位水池水位低和主管有水,则打开进水电动蝶阀和起动加压泵向高位水池供水;
(2)若高位水池水位满且主管有水,则给出报警信号并关闭加压泵和进水电动蝶阀;
(3)若主管无水表明用水量增大或抽水泵房停止供水,必须开启出水电动蝶阀由高位水池向主管补充不。
像抽水泵一样,我们为加压泵配备了软起动器和电机保护器,确保加压泵长期可靠地运转,配备了高位水池的水位传感器和数显仪和缺水传感器。
为保证整个主水管网的恒压供不,当高位水池满且主水管有水时,加压泵停止,此时主管压力将“憋压”,终导致主管压力上升,并将此压力传递到抽水泵房,抽水泵的控制系统检测到此压力进行恒压变频控制,进而达到整个主管网的恒压供水,这是整个控制系统设计的关键。
3 系统实现功能
3.1 全自动平稳切换,恒压控制
主水管网压力传感器的压力信号4~20mA送给数字PID控制器,控制器根据压力设定值与实际检测值进行PID运算,并给出信号直接控制变频器的转速以使管网的压力稳定。当用水量不是很大时,一台泵在变频器的控制下稳定运行;当用水量大到变频器全速运行也不能保证管网的压和稳定时,控制器的压力下限信号与变频器的高速信号被PLC检测到,PLC自动将原工作在变频状态下泵投入到工频运行,以保持压力的连续性,将一台备用的泵用变频器起动后投入运行,以加大管网的供水量保证压力稳定。若两台泵运转仍,则依次将变频工作状态下的泵投入到工频运行,而将另一台备用泵投入变频运行。
当用水量减少时,表现为变频器已工作在低速信号有效,这时压力上限信号如仍出现,PLC将工频运行的泵停掉,以减少供水量。当上述两个信号仍存在时,PLC再停掉一台工频运行的电机,直到后一台泵用主频器恒压供水。控制系统设计六台泵为两组,每台泵的电机累计运行时间可显示,24小时轮换一次,既保证供水系统有备用泵,又保证系统的泵有相同的运行时间,确保了泵的可靠寿命。控制系统图见图3。
3.2 半自动运行
当PLC系统出现问题时,自动控制系统失灵,这时候系统工作处于半自动状态,即一台泵具有变频自动恒压控制功能,当用水量不够时,可手动投入一台或几台工频泵运行。
3.3手动
当压力传感器故障或变频器故障时,为确保用水,六台泵可分别以手动工频方式运行。
4实施效果
实际运行证明本控制系统构成了多台深井泵的自动控制的经济结构,在软件设计中充分考虎变频与工频在切换时的瞬间压力与电流冲击,每台泵均采用软起动是解决该问题关键。变频器工作的上下限频率及数字PID控制的上下限控制点的设定对系统的误差范围也有不可忽视的作用。