6ES7222-1BD22-0XA0使用方式
0. 引言
我国东北地区是规模大的食用菌生产加工出口基地之一。随着市场需求的不断增加,生产能力的逐渐扩大,生产设备的老化与滞后问题突显出来。培养基二次发酵是某企业一个重要的生产过程,是食用菌生产的基础工序。目前,该公司有6个培养基二次发酵隧道。每个隧道配置8个温度传感器,分别布置在发酵隧道的入风口、出风口和培养基中,用于检测发酵过程温度。每个隧道配置一台风机和风门,用于调节发酵隧道的温度,达到整个发酵过程的要求。现阶段,该公司采用人工的方法监控隧道温度,并用手动的方法调节风机转速和风门开度。自动化水平低、耗能高、人力资源的浪费等诸多问题急需解决。
在传统的PLC 变频控制集成系统中,变频器的启动/停止与故障监控由PLC 通过开关量实现端对端控制。变频器频率是由PLC通过模拟量输出端口输出0~5(10)V 或4~20mA 信号控制,需要PLC 配置昂贵的模拟量输出端口模块。变频器出现故障时由PLC读取变频器的故障报警触点,对具体故障原因并不清楚,需查询变频器报警信息后再阅读变频器说明书才知道。随着交流变频控制系统及通讯技术的发展,可以利用PLC及变频器的串行通讯的方式来实现PLC 对变频器的控制。
在工业自动化控制系统中,为常见的是PLC 和变频器的组合应用,并且产生了多种多样的PLC 控制变频器的方法,其中采用RS-485通讯方式实施控制的方案得到广泛的应用:因为它抗干扰能力强、传输速率高、传输距离远且造价低廉。本文就是针对该公司的自动化问题,应用PLC与变频器的串行通讯,实现风机的变频调速和远程监控[1]。
1.变频器通讯的系统配置
1.1 变频器的选择
易能电气的EDS1000 系列变频调速器提供串行通讯技术的支持。它所支持的串行通讯技术包括标准RS-485、PROFIDRIVE、LONWORKS在内的多种现场总线方式。其中,RS-485通讯方式为用户提供了无需附加任何费用的、为廉价实用的串行通讯方式。只需按照EDS1000变频器规定的通讯数据结构、控制字和状态字格式发送数据即可实现与变频的通讯。
1.2 PLC 的选择
西门子工控产品在工控领域应用市场中有较高的占有率。S7-200 系列是西门子SIMATIC PLC 家族中的小规模PLC成员,自由通讯口方式是S7-200 PLC 的一个特色的功能,它使S7-200 PLC可以由用户自己定义通讯协议。利于自由通讯口方式,在本系统中PLC可以与变频器方便连接。PLC通过自由通讯口方式与变频器通讯,控制变频器的运行,读取变频器自身的电压、电流、功率、频率和过压、过流、过负荷等全部报警信息等参数,这比通过外部端口控制变频器的运行具有较高的可靠性,节省了PLC宝贵的I/0 端口,又获的了大量变频器的信息。在本例中,作者将按照自由口协议来对S7-200 的自由口进行编程[2]。
1.3 系统硬件组成
EDS-1000 系列变频器R-485 接口与西门子S7-200 系列226CPU 型PLC 的自由通讯口1的配线图,如图1所示。PLC 为主机,变频器为从机,主从机点对点通讯。
1.4 硬件安装方法
(1)用网线专用压接钳将电缆的一头和RJ45 水晶头进行压接;另一头则按西门子PLC自由通讯口的针口排列,与DB-9专用转接插头相连。
(2)将RJ45 电缆分别连接变频器的PU 口,把DB-9 专用转接插头与S7-200 PLC 的自由通讯口1 相连
2. 变频器通讯原理
EDS1000 系列变频器的串行通讯为异步半双工的方式,使用字节奇偶校验。PLC为主机,变频器为从机,系统电码的传输由主机控制,主机不断发出某个地址的电码给从机,等待从机的响应。主机多能带31个从机,在有中继器的情况下,可以增加到126个从机,也就是从机的地址多可以设定到126。通讯时,传输的默认格式和传输速率为:8-N-1,9600bps。传输的数据命令帧格式表1所示。
上述数据结构中:
(1)帧头:为字符“~”(即十六进制7E),单字节。
(2)从机地址:从机的本机地址,占用两个字节,ASCII 格式。变频器出厂设置为01。
(3)主机命令/从机响应:主机发出的命令,从机对命令的应答。占用双字节,采用
ASCII 格式。
(4)辅助索引/命令索引/故障索引:对于主机,辅助索引、命令索引用于配合主机命令实现具体功能。对于从机,辅助索引、命令索引用于从机上报故障状态码,命令索引不作改动,直接上报。数据类型为16进制,4 个字节,ASCII 格式。命令索引占用低二个字节,辅助索引占用高二个字节,数据范围为“00”~“FF”。
(5)校验和:数据含义为帧校验,占用四个字节,ASCII 格式。计算方法为“从机地址”到“运行数据”全部字节的ASCII码值的累加和。
(6)帧尾:十六进制0D,单字节[3]
3. PLC 编程示例
本文结合发酵隧道控制系统的需要,考虑其实用性,本系统主要是设置变频器的运行频率和读取变频器的参数。
3.1 变频器的运行频率设定程序
PLC 在次扫描时执行初始化子程序,对通讯端口进行设置。本例运用端口1进行通讯,变频器地址为01。例如:设定值为40.00HZ,格式:“~010C00010FA0027C\R”,程序如下:
Network 1 //初次扫描,进行初始化操作,置传送字节数。//
LD SM0.1
MOVB 18, VB199
Network 2 //若SM0.7=1,允许自由口模式//
LD SM0.7
MOVB 9, SMB130
Network 3 //若SM0.7=0,允许PPI/从站模式//
LDN SM0.7
R SM130.0, 1
Network 4 //初始化从机运行频率给定命令//
MOVB 0, MB2
MOVB 18, MB3
Network 2 //连接字符接收中断到中断程序0//
LD SM0.7
ATCH INT_0:INT1, 25
ENI
Network 3 //若MB2=MB3 时,则:计数器清0,恢复初始状态//
LDB= MB2, MB3
MOVB 0, MB2
MOVD &VB320, VD316
中断进行接收数据程序如下:
Network 1 //断开中断,将数据放入数据区//
LD SM0.0
DTCH 25
MOVB SMB2, *VD316
INCD VD316
INCB MB2
4. 结束语
使用此方法采用西门子S7200 系列226 型CPU 的PLC 通过自由口1,使用RS-485 协议对易能EDS1000型变频器进行控制,极大地减少了线路连接的复杂性,避免了现场可能的各种电磁干扰对控制设备的影响。
1 引 言
在工业过程控制中,PID控制适合于可建立数学模型的确定性控制系统。但在实际的工业过程控制系统中存在很多非线性或时变不确定的系统,使PID控制器的参数整定烦琐且控制效果也不理想。近年来,随着智能控制技术的发展,出现了许多新型的控制方法,模糊控制就是其中之一。模糊控制不需要掌握控制对象的jingque数学模型,而是根据控制规则决定控制量的大小。这种控制方法对于存在滞后或随机干扰的系统具有良好的控制效果。PLC具有很高的可靠性,抗干扰能力强,并可将模糊控制器方便地用软件实现。用PLC构成模糊控制器用于油田的污水处理是一种新的尝试,不仅使控制系统更加可靠,取得了较好的控制效果。
2 污水处理工艺简介
目前我国许多油田处于二次采油期,即注水开采期,所采的油中含有大量的污水。油田污水处理的目的是将处理后的水回注地层以补充、平衡地层压力,防止注入水和返回水腐蚀注水管和油管,避免注入水使注水管、油管和地层结垢。其处理方法是使用A、B、C三种药剂,其中A剂为pH值调整剂,B剂为沉降剂,C剂为阻垢剂。其工艺流程方案如图2—1所示。根据工艺要求,关键是在混合罐中对污水添加A剂提高污水的pH值(即控制pH2)以减少腐蚀。添加B剂可加速污水中絮状物的沉淀。添加C剂可减缓污水在注水管和油管中的结垢。该系统属非线性、大滞后系统,其对象的jingque数学模型难以获得,采用PID反馈控制效果不是很理想,且采油联合站都位于偏僻的地方,环境恶劣。该污水处理系统采用了基于PLC的模糊控制来提高系统的控制精度和可靠性,从而满足工艺要求。
3 模糊控制原理
控制系统采用“双入单出”的模糊控制器[1]。输入量为pH值给定值与测量值的偏差e以及偏差变化率ec,输出量为向加药泵供电的变频器的输入控制电压u。图3—1为模糊控制系统的方框图[2]。控制过程为控制器定时采样pH值和pH值变化率与给定值比较,得pH值偏差e以及偏差变化率ec,并以此作为PLC控制器的输入变量,经模糊控制器输出控制变频器输出频率n,从而改变加药量使pH值保持稳定。
模糊控制器包括输入量模糊化、模糊推理和解模糊3个部分。E和Ec分别为e和ec模糊化后的模糊量,U为模糊控制量,u为U解模糊化后的jingque量。
3.1 输入模糊化
在模糊控制器设计中,设E的词集为[NB,NM,NS,N0,P0,PS,PM,PB][3],论域为[-6,-5,-4,-3,-2,-1,0,+1,+2,+3,+4,+5,+6];Ec和U的词集为[NB,NS,NM,0,PS,PM,PB],论域为[-6,-5,-4,-3,-2,-1,0,+1,+2,+3,+4,+5,+6]。令-1),pH0表示期望值。将e、ec和u模糊化,根据pH值控制的经验可得出变量E、Ec和U的模糊化量化表。表3—1为变量E的赋值表。
3.2 模糊决策和模糊控制规则
污水处理过程中pH值的控制经验,得出控制规则,如表3—2所示。选取控制量变化的原则是:当误差大或较大时,选择控制量以消除误差为主。而当误差较小时,选择控制量要注意防止超调,
以系统的稳定性为主。例如,当pH值低很多,且pH值有快速降低的趋势时,应加大药剂的投放量。可用模糊语句实现这条规则(IFE=NB ANDEc=NB THEN U=PB)。当误差为负大且误差变化为正大或正中时,控制量不宜再增加,应取控制量的变化为0,以免出现超调。一共有56条规则。每条规则的关系Rk可表示为:
7)根据每条模糊语句决定的模糊关系Rk(k=1,2,…,56),可得整个系统控制规则总的模糊关系R。
3.3 输出反模糊化
根据模糊规则表取定的每一条模糊条件语句都计算出相应的模糊控制量U,由模糊推理合成规则,可得如下关系:
以此得出模糊控制量,如表3—3所示。依据大隶属度法,可得出实际控制量u。再经D/A转换为模拟电压,去改变变频器的输出频率n,通过 加药泵控制加药量调节pH值,从而完成控制任务。
1、在变频器没有使用在粗纱机之前,粗纱机在起动和关车时,由于牵伸和卷绕两个传动系统的传动链不同、转动惯性不一致,使前罗拉引出粗纱条的线速度与锥轮传递纱管的卷绕线速度不同,这种不匹配的速比具体表现为起动时卷绕时间快于引纱时间,关车时引纱时间快于卷绕时间,于是在开关车时就会产生大量细节。而粗纱机在纺纱过程中频繁的开关车是不可避免的。
我公司JBA变频器可以通过控制主电机,调整电机电源的频率使电机启动到设定值时间(启动)或者关车时间进行认为设定,达到实现慢启动、慢停车,取消了设备中电抗器和电磁离合器等不容易维修的部件。在设定启动时间(加、减速时间)不可过分追求慢速,否则电机容易发热、损坏,因为增加停车时间,增加电能损耗、影响效率。
2、在纺纱过程中,粗纱的卷装直径要经历一个由小到大的变化过程,在前几百米和后几百米粗纱断头率很高,质量容易产生变化。在传统的纺纱中,“恒定”的电机转速在纱径中时需要加速却又无法加速。企业便时常陷入要产量顾不了质量,要质量又顾不了产量的两难境界。
我公司变频器的多段速控制便会弥补这些缺点。如多段速设定可按1000m长度为一段,将一落粗纱设定为若干段,如7000m长的一落粗纱就为7段,每一段编辑为一个功能码,通过对变频器的调整可以任意设定这每一段的频率。这样便可以在纱径小、纱径中和纱径大时使电机获得不同的转速,从而达到电机转速按纺纱进程的需要而作相应变动的目的,真正实现粗纱机的优质、高产。
通过PLC和人机对话,使变频器的调速功能得到更为简易的操作。实现高效、节能和达到工艺的效果