6ES7231-7PC22-0XA0使用方式
1 引言
虹吸式离心机是一种特殊结构的离心机,它是在刮刀离心机的转鼓上增加了转动虹吸装置,从而具有普通刮刀离心机没有的优势,即tigao了过滤推动力及过滤效率,增加了生产能力,延长了有效周期[1]。虹吸式离心机优势的正常发挥是以准确操作控制离心机为前提条件。虹吸式离心机是连续运转、循环工作的,各工序间严格以时间或条件为控制依据,每个阀门的开、关控制及虹吸管的协调工作不能在一般的人工操作条件下达到要求。
可编程控制器(PLC)是常用于工业现场的计算机控制装备[2],随着其扩展功能和通信能力的增强,越来越多的应用于复杂的分布式计算机控制系统。本文利用可编程控制器的通信功能,来控制多台虹吸式离心机的运行,不仅能够准确分散地控制每一台离心机正常、高效工作,能够通过上位机集中采集、显示、修改每一台离心机的运行参数,起到控制及风险分散,显示和操作集中的目的。
2 系统的组成
系统的组成如图(1)所示。
图(1)多台离心机控制系统的组成框图
(一)PLC的功能模块
PLC作为控制系统的基本控制器。PLC向下采集信号以及控制工业现场的离心机。一台PLC控制一台虹吸式离心机。包括控制离心机的主电机的启停、各个电磁阀的动作、虹吸管的进退、显示和报警的控制等。PLC在每一个采样周期采集模拟信号,包括主电机的电流信号、主机前后轴承的温度、振动信号。PLC向上通过数据通道传输现场信号,并接收上位机来的信号。PLC作为整个控制系统的主体,它的性能及可靠性起着关键的作用。我们选择光洋电子公司的S系列可编程控制器。它的模块组成如表(1)所示。
表(1) 可编程控制器模块的组成
CPU选用SZ-4,可安装128个输入输出点数,指令的平均处理速度为1-2.5µs,有2个通用的通讯端口。Z-4AD2是4通道电压型模拟量输入模块,输入DC0-5v分辨率为12位,主要采集电流、温度及振动4个模拟信号。Z-16ND2是16点DC24v输入模块,输入启停按钮及限位开关等的开关量信号。2个输出模块选用Z-16TD2,为16点集电极开路输出,输出控制电机启停的接触器、离心机运行所需各电磁阀、指示灯及报警的开关信号。Z-01DM是通讯模块,便于与上位机进行信号传送。Z-05B是可装5个输入输出模块的电源框架,额定供给电源为AC100-200v50/60HZ,输出电流为2.6A。通过计算框架上所有模块功耗的合计值,没有超过电源框架提供的电源容量,可安全使用[3]。
(二)离心机的工艺流程
离心机主要由螺旋组件、门盖组件、转鼓组件、机座壳体组件、虹吸管组件、传动装置、液压系统和电气控制系统等组成。离心机的工艺流程图如图(2)所示。
图(2)离心机的工艺流程图
离心机的每个循环的各个操作都是在电气-液压系统控制下自动完成的,在机器的调试阶段可以使用手动操作。
(三)通讯系统
上位通讯是通过数据通讯模块Z-01DM在CCM网络上进行。CCM协议使通讯主机保持通讯的主动权,从机只能响应对其的呼叫。而通讯的局号、传送方式、奇偶校验方式的设定由系统参数来定。连接时用变换器D-01CV转换连接上位机的RS-232C电缆和连接PLC通讯模块的RS-422电缆。
(四)上位计算机
由上位机对基本控制器PLC传达或收集离心机运行信息,由上位机对PLC进行维护和管理。上位计算机用工控机实现,用组态软件实现图形监控和人机界面。
3 控制流程图
PLC的控制流程框图如图(3)所示。
PLC上电后进行系统自检,包括对CPU模块的检查、运行状态的检查、电池系统的检查、I/O模块的检查、通讯功能的检查等。系统正常进行模拟信号的周期采样,超过上限值输出报警。系统可以进行手动或自动操作,自动运行按照离心机工艺流程,按工序顺序执行,以时间或条件作为每一个工序的开始或结束。
图(3)系统控制流程图
4 结束语
由于可编程控制器在模拟信号处理、操作指令、控制规律、通讯功能等方面的发展,拓宽了它在工业强电现场控制中的应用领域。虹吸式离心机作为一种具有独特结构的分离设备,考虑它的工艺的特点及操作控制要求,可编程控制器非常适用于作为它的控制装备,以充分发挥虹吸离心机的高效优势。
1 引言
随着煤矿近年来现代化的管理水平迅速tigao,信息化建设的步伐也不断加快。为保障煤炭的安全生产、tigao全矿的生产效益,必须保证排水系统可靠、稳定、合理的运行。某采区泵房是主要采区泵房,担负着几个采区每小时300m3的排水任务,及时发现水泵运行系统中存在的隐患,对水泵实行数字化监控水泵的运行,监控泵房水仓的水位,为矿各级领导和职能管理部门及时准确地掌握水泵实时运行状态,对采区泵房水泵建立一套水泵监控系统十分必要。
2 系统的主要组成部分和实现的功能
泵房共有4台型号为200D43X8的多级泵,每台轴功率为334kW,扬程为344m,liuliang为280立方米/小时,转速为1480rpm,配套电机功率为500kW,供电电压为6000V;4台真空泵,用于水泵启动是抽真空用(自动灌引水),极限真空为8000Pa,liuliang:3m3/min,转速为1450rpm,功率5.5kW,配套电机功率为5.5kW,转速1440rpm。
系统主要设备组成如图1所示。
图1 系统主要设备
2.1 PLC隔爆控制箱
本系统选用西门子公司的S7-300型可编程控制器。
S7-300是模块化的中小型PLC,采用模块式结构,它具有系统容量大、扩充方便、各种功能模块齐全、指令功能强、高速、坚固、通信能力强、操作方便等特点,特别适合于工业环境及电气干扰环境。本系统PLC由电源模块、中央处理单元CPU313C-2DP、以太网通信模块CP343-1、模拟量输入模块SM331、数字量输入模块SM321和数字量输出模块SM322等组成。PLC自动检测水位信号,根据水位的不同位置,自动投入和退出水泵运行台数,合理地调度水泵运行,并根据排水压力和liuliang、电流、电压、振动、温度等信息判断水泵、电机等运行是否正常。
2.2 高压开关微机保护单元
高压开关采用GSB-2型综合保护装置,该装置以DSP芯片TMS320F240为CPU,采用交流采样直接测量电网二次测交流信号,具有遥测、遥信、遥控功能,配置的人机接口,可远程设置综合保护整定参数,LED数码管实时显示监测的电压、电流、有功功率、功率因数和电度参数,指示灯实时显示运行状态、分闸状态、故障状态等信息。
2.3 地面监控站
选用研华IPC610计算机,并配以上位机组态软件,动态监控水泵及其附属设备的运行状况,实时显示水位、liuliang、压力、温度、电流、电压等参数,超限报警,故障点自动闪烁。具有故障记录,历史数据查询等功能,并可实现遥测、遥控功能。并配置一台UPS电源,以保证系统的连续运行。
2.4 变送器
将现场实时参数转化为可以采集的电信号。在本系统中设置有液位、温度、振动、电量、liuliang和压力等变送器。
2.5 通讯网络
个通讯网络:PLC与人机界面间的通讯。通讯采用MPI方式,速率为:187.5kbps两者可以周期性的交换少量的数据,在本系统中该通讯完成将PLC中处理后的现场的各种运行数据送就地人机界面显示,可以将人机界面输入的控制命令送到PLC,控制设备的运行。
第二个通讯网络:由于现场接线比较多,将控制箱分为主控制箱与分控制箱(ET200远程终端),两者采用Prifobus总线通讯。PROFIBUS是为全集成自动化定制的开放的现场总线系统,他将现场设备连接到控制装置,并保证在各个部件之间的高速通信,从I/O传送信号到PLC的CPU模块只需毫秒级的时间。
第三个通讯网络:PLC与矿调度室间通讯。在PLC上扩展一个工业以太网模块CP343-1,并在监控计算机上安装通讯卡,如CP5613等。两者连接可组成一个比较简单的工业以太网。在本系统中该通讯完成将现场的设备状态、运行数据、故障信息等所有设备信息参数通过矿信息化的千兆以太网送到总调度室上位机,将上位机的控制指令送PLC。
2.6 其它执行元件
电动阀门、电磁阀、急停开关、按钮等。
3 软件设计
本系统的软件主要由2大部分组成:上位机监控软件和现场PLC监控软件。
3.1 上位机监控软件设计
上位机监控软件选用西门子公司的组态软件—Wincc6.0版,该组态软件运行于bbbbbbs环境,结合了西门子在自动化领域的先进技术和微软公司的软件技术,为我们提供了一种高效、开放的组态开发环境。在本系统中它完成实时数据处理、显示并定时记录泵房控制PLC和高压开关微机保护装置的数据,并能够自动生成运行参数的日报表、月报表和年报表;当现场设备有动作或出现故障时能够自动弹出报警画面并语音提示,给值班人员警示。允许远程控制操作时,在紧急情况下值班人员可以用自己的操作密码远程控制各水泵的运行。
3.2 下位机监控软件设计
下位机软件设计主要为PLC监控软件的设计,在本系统中为重要软件设计部分。该系统软件的开发环境为SIEMENS SIMATICSTEP7 V5.2编程软件,用模块式结构程序方式编程,这样既可增强程序的可读性,方便调试和维护工作,又能使数据库结构统一,方便WINCC组态时变量标签的统一编制和设备状态的统一。程序主要分为:通讯子程序、水泵控制子程序、数据处理子程序、保护功能处理子程序等。其中水泵启停子程序简要流程如图2所示:
图2 水泵启停子程序简要流程图
4 结束语
本控制系统投入运行来,一直稳定可靠,故障率低,维修量小,并具有如下的优点:
(1) 自动化程度高,具有自动、手动控制方式, 两种方式互为备用。
(2) 合理的使用4台电机,使其循环工作,在保证有备用的情况下,延长了每台电机的使用寿命。
(3) 设备有完善的故障判断功能,可为操作人员迅速排除故障提供方便。
(4) 系统的输出数据完整,准确,极大的方便了管理。
2.1 上位机监控
利用工控机作为上位机。由它运行监控软件。它操作简单、思路清晰、界面友好。上位机软件主要包括以下几个模块:
(1) 数据采集、存储模块
上位机软机每隔1s向可编程控制器发送读温度命令,接受控制器返回的温度数据,经过错误校验以后进行存储并显示。
(2) 数据查询模块
上位机存储的历史数据可以按照不同的规则进行查询以供分析,系统的设置参数也可以进行查询。
(3) PID参数整定模块
PID算法大部分是在下位机完成,上位机也可以根据需要调整参数kp、ki、kd的初始值。为了更好的发挥上位机软件的强大作用也可以进行神经网络、专家控制、学习控制等智能算法的应用。
(4) 通讯模块
主要负责与下位机的数据交换及数据格式的转换。
2.2 温度控制
温度控制是波峰焊机控制系统的核心。系统利用K型热电偶采集温度信号。它通过控制固态继电器的输出来调节占空比,从而改变电阻丝两端的有效电压,达到控制温度的目的。在很多工业控制过程中一般都采用PID控制,特别是对于纯滞后、大惯性的温度控制。PID控制是按照实际温度和设定温度偏差的比例、积分、微分产生控制作用,实际运行效果和理论分析表明,这种控制规律可以得到比较满意的结果。
2.3 步进电机控制
在波峰焊机控制系统中有三种步进电机:链幅调节步进电机、liuliang控制步进电机和喷嘴移动步进电机。步进电机是将电脉冲信号变换成角位移的一种机电式数模转换器。它受脉冲信号控制,角位移与输入脉冲个数构成严格的正比例关系,每输入一个脉冲,步进电机就转动一定的角度。它具有定位精度高、惯性小、无积累误差、启动性能好等特点。它广泛应用于要求精密定位的旋转或线性运动的控制系统。PLC输出的脉冲信号通过步进电机驱动器达到控制步进电机的目的。
2.4 网络通讯
上位机监控软件和S7-200可编程控制器之间以及PLC和变频器之间用RS-485连接。通信协议是基于S7-200自由口通讯的Modbus协议。Modbus协议是MODICON公司为其生产PLC设计的一种通讯协议。此协议定义了一个控制器能认识使用的消息结构。它描述了控制器请求访问其它设备的过程,回应来自其它设备的请求,以及怎样侦测错误并记录,制定了消息域结构和内容的公共格式。上位机和PLC的通信使用主-从结构,采用请求-响应方式,主站发出带有从站地址的请求报文,具有该地址的从站收到后发出响应报文进行应答。
Modbus协议有ASCII和RTU两种报文传输模式,在设置每个站的串口通信参数时,Modbus网络上所有的站都必须选择相同的传输模式和串口参数。本系统中我们采用RTU模式进行传输。如图2所示RTU通信帧的基本结构。
图2 RTU通信帧的基本结构
在下位机PLC中使用Modbus从站协议进行设计。在用户程序中调用Modbus从站指令。如图3所示,MBUS_INIT指令用来设置或改变Modbus通信参数。该指令应只在一个扫描周期内执行,一般用在扫描时工作一个扫描周期的SM0.1的常开触点来驱动它。程序中只能使用一条MBUS_SLAVE指令,每次扫描都应调用该指令,以响应接收到的通信请求。
图5 温控子系统软件框图
3.2 模糊PID参数自整定算法研究
由于电阻炉温度是一种大惯性、纯滞后的控制对象,PID算法的参数很难确定。一般的参数整定方法就是根据经验设定其参数初值,根据具体工艺条件再进行调整。这种方法费时费力还不准确,项目开发了基于继电反馈的模糊PID参数自整定方法。
模糊控制器是以人的控制经验作为控制的知识模型,以模糊集合、模糊语言变量和模糊逻辑推理作为控制算法的数学工具,并利用计算机数字控制技术来实现的一种智能控制器。控制器的输出和参数的调整是通过过程函数的逻辑模型产生的,改善模糊控制特性的有效方法是优化控制规则。图6为模糊控制系统的基本结构。
图6 模糊控制系统的基本结构
此模糊控制器由四个基本部分组成,即模糊化、知识库、模糊推理和反模糊化。设计模糊控制器的步就是要选择论域和模糊子集的隶属函数。将确定的隶属函数曲线离散化,就得到有限个点上的隶属度,便构成了一个相应的模糊变量的模糊子集。在本控制系统中笔者设误差的基本论域为{-6,-5,-4,-3,-2,-1,0,+1,+2,+3,+4,+5,+6},误差变化的基本论域为{-6,-5,-4,-3,-2,-1,0,+1,+2,+3,+4,+5,+6}。为了进行模糊化处理,必须将输入变量从基本论域转换到相应的模糊集的论域。误差的量化因子
,误差变化的量化因子
。这两个量化因子使得误差实现了从基本论域变换到模糊论域的作用,即由基本论域中的任意一点通过量化因子映射到模糊集论域中相近的整数点。每次采样经模糊算法给出的控制量还不能直接控制被控对象,还必须将其转换到控制对象所能接受的基本论域中。就是进行模糊控制规则的选取和模糊推理方法的选择。模糊控制器的控制规则其实是基于专家的控制策略,它基于经验和技术知识,而控制器则是基于某种控制算法的数值运算。具体而言就是:当误差大或较大时,选择控制量以尽快消除误差为主,而当误差小或较小时,选择控制量要注意防止超调,以系统的稳定性为主要出发点。
通过实验得到的波峰焊炉温模型进行仿真。假定电阻炉的温度模型为:
,Ke=0.1,Kec=1, Ku=12,控制周期为1s,模糊控制器输出为工频电压。仿真效果如图7所示。
图7 波峰焊温度控制仿真效果
4 结束语
波峰焊机控制系统的核心是温度控制。只要控温精度上去了,就可以说此控制系统已经达到基本要求了。本文研究的波峰焊机控制系统利用西门子公司的S7-200系列PLC作为下位机控制器,它的抗干扰能力强、稳定、可靠。利用其PID参数自整定模块可以达到较好的效果,由于此模块刚推出不久,它的控制功能有待考验。可以根据模糊PID自整定算法原理自己编写程序,同样可以达到很好的温度控制精度。为了促进无铅焊接设备的发展,其它智能控制理论也将越来越多的应用于此类控制系统中