西门子模块6ES7212-1BB23-0XB8产品齐全
表1E点(P点)控制码
点击此处查看全部新闻图片
图22轴型位控单元工作原理图
PLC位控单元自动升降速特性曲线
点击此处查看全部新闻图片
3、磨削加工PLC控制原理
如图4所示,PLC可以控制变频器、传感器、步进电机。总控制程序流程图如图5所示。其中两个步进电机是利用PLC的位控单元控制的。在进行精密磨削过程中,横向进给将是十分重要的,PLC的位控单元能较jingque地控制步进电机的转角,从而使滚珠丝杠获得jingque定位。由于PLC位控单元的控制方法有多种,对于磨削加工来讲,横向进给量不能大于215μm,通过实验的方法可以找出佳方案。这里只通过一种控制方法来说明位控单元的具体应用。设置原点,利用光栅尺粗对刀,测量出对刀位置距原点的距离。为防滚珠丝杠出现爬行现象,工作台从原点出发,经过一段距离以后开始自动加/减速。此时,只要给定起始速度,目标速度,加速/减速时间以及位置要求值,并设定控制码即可实现上述功能,相关程序如图6所示。如果假设滚珠丝杠的螺距为d,步进电机的步距角为α°;进给速度为v(mm/s);行程为s(mm);则要求的脉冲频率(即程度中的目标速度)为f=360v/αd(Hz);总脉冲数(即程序中的位置要求值)为F=360s/da(个)
点击此处查看全部新闻图片
图4PLC控制磨削加工结构原理图
点击此处查看全部新闻图片
图5总控制程序流程图
点击此处查看全部新闻图片
图6步进电机S型加/减速程序梯形图
4、结束语
PLC位控单元具有运行速度快、灵敏度高、精度高、编程简单等众多优点。因
当今世界上精密加工技术发展很快,新的加工方法和设备层出不穷,计算机的广泛应用使精密加工技术更为普及和多样。实现精密和超精密切削加工有三种方法:(1)采用和研制高精度加工设备;(2)采用新的切削工具材料;(3)利用加工与测量控制一体化技术。前两种方法成本较高,而后一种方法成本较低,具有广阔的前景。在后一种方法中,除了要保证刀具的精度、夹具的精度以及测量精度外,还有一项重要内容就微进给机构的精度及其控制精度。笔者在控制精密磨削的研究中,利用步进电机带动滚珠丝杠作为进给机构,在滚珠丝杠确定后,步进电机的控制精度成为了主要矛盾。
1、步进电机的控制
步进电机在不失步的正常运行时,其转角严格地与控制脉冲的个数成正比,转速与控制脉冲的频率成正比。可以方便地实现正反转控制及调整和定位。由于步进电机和负载的惯性,它们不能正确地跟踪指令脉冲的启动和停止运动,指令脉冲使步进电机可能发生丢步或失步甚至无法运行。必须实现步进电机的自动升降速功能。为了实现速度的变化,输入的位移脉冲指令相应地要升频、稳频、和降频些脉冲序列,可以由脉冲源加专用逻辑电路来产生,也可以由微型计算机产生。对于脉冲源加逻辑电路构成的控制器来说,控制逻辑是固定的,即控制电路一经固定,其控制逻辑也就固定了。
如果要改变控制逻辑和控制方案,必须改变电路结构和元件数,而使用计算机控制,不必改动硬件电路,只要修改程序,就可以改变控制方案。且可以从多种控制方案中,选取一种佳方案进行控制和调节。也可以用同一套系统对不同控制方案的多台步进电机控制。利用计算机控制的形式也很多,本文介绍PLC位控单元对步进电机的控制。
2、PLC系统组成及位控单元的工作原理
本研究所利用的PLC系统的组成包括如下七大模块:电源,CPU,位控单元,I/O单元,A/D,D/A单元,如图1所示。其中位控单元的主功能是当步进电机(或伺服电机)与电机驱动器联结时,输出脉冲序列控制电机的转速与转角。进给机构可以是2轴型,也可以是4轴型。本文采用的是前者,即滚珠丝杠的横向进给与纵向进给,如图2所示。具体地说,位控单元实现速度以及位置的控制方法有多种,如E点控制(单速度控制),如图3(a)所示;P点控制(多级速度控制);线性加/减速和S型加/减速,(a),(b)为线性加/减速,S型如。还有位置控制和相对位置控制等。表1给出了E点控制不同模式的控制码(P点与其相同)。
点击此处查看全部新闻图片
图1PLC系统组成结构图
一、概述
本文以某钢铁厂150t转炉为背景,其自动化系统的配置使用了Schneider自动化的QuantumPLC(培训)。项目由三部分组成:转炉本体、氧枪和原料,对应三套PLC(培训)控制系统。系统模拟量约2000点,数字量点约3000点,调节回路18个。
二、主要工艺图:
三、系统控制内容及功能要求
1、氧枪部分
(1)氧枪控制:检测降枪条件,控制吹炼过程中一系列连锁动作。
(2)氧枪定位控制:采用增量型编码器,自动判断出吹炼位置。
(3)变频器(培训)控制:氧枪水泵、汽包给水泵、设备水泵等重要设备全部由变频器(培训)控制。
(4)溅渣护炉:转炉的顶底复吹自动控制。采用顶吹中压氮气,将炉内剩余残渣吹至转炉炉壁上。
(5)倾动控制:对转炉进行前倾、后倾操作,保护氧枪。
2、原料部分
控制炼钢所需散装料和合金料的备料及下料。散装料和合金料通过料仓、给料器、称量料斗、溜槽、皮带机及下料溜槽进行控制及连锁,完成定量散装料和合金料的加入工作。
3、仪控部分
主要包括汽包液位及调节、除氧器水位及调节、顶吹氧气流量调节、底吹模式及流量调节、二文液压控制以及温度、压力、流量等基础数据的采集处理。
4、转炉一次除尘引风机
主要完成对风机转速控制、煤气回收各阀门控制、仪表参数的采集处理。
四、重点及难点
(1)氧枪定位采用增量型编码器,通过1756-HSC高速计数模板采集编码器的脉冲信号,经CPU运算处理成工程量位移信号。
(2)利用参数文件,实现了调用同一个画面,控制不同料仓的功能。
(3)在吹炼期和非吹炼期,风机采用高低速控制,两种速度转换时采用步进式调节。
(4)在出钢或出渣的可手动升降氧枪,启动刮渣器,进行刮渣。
(5)各系统间数据通讯采用环形快速以太网,在网络介质遭到破坏时,能够保证网络继续稳定运行,生成报警,通知维护人员对进行处理。
五、系统组成
六、解决方案:
以下是氧枪PLC(培训)硬件配置
七、操作站的主要工作
1、大数据量高速数据处理。模拟量约2000点,开关量约3000点。
2、长期历史趋势查询功能。可保存上百点的历史趋势一个月。
3、调节控制功能实现。控制调节回路18个。
4、逼真的生产工艺流程再现。工艺流程画面120余幅。
5、事件报警处理。记录时间一个月,报警条目600条。
6、快速、良好的动态响应能力。通过人机交互实现快速生产设备控制。
八、经济效益计算
主要反映在:控制系统稳定运行在钢产量综合效益中所占比例。按转炉年正常生产天数330天,每小时炼钢150吨,吨钢效益80元,控制系统所占综合效益比10%计算,则年经济效益=330x24x150x80x10%=950.4(万元)。
九、系统评价:
1、高可靠性:Schneider PLC(培训)提供了更为可靠的平台。
2、开放性强:标准的工业以太网架构为系统提供了广阔的空间。
3、低故障率:较强的抗电磁辐射和干扰能力以及工业化现场设计使得PLC(培训)故障率≤1次/年。
4、适应性强:可以工作在恶劣的冶金企业环境。
5、性能优异:与主流操作系统、工业控制软件、用户应用程序的兼容性能良好,实时控制性能好。