6ES7231-7PB22-0XA8诚信经营
引言
现场总线控制系统(FCS)用数字信号取代模拟信号,以提高系统的可靠性、jingque度和抗干扰能力,并延长信息传输的距离。它既是一个开放的通信网络,有时一种全分布的控制系统,是一种新型的网络集成自动化系统,它以现场总线为纽带,把挂接在总线上相关的网络节点组成自动化系统,实现基本控制、补偿计算、参数修改、报警、显示、综合自动化等多项功能。
FCS用“工作站-现场总线智能仪表”的二层机构完成了集散控制系统(DCS)“操作站-控制站-现场仪表”的三层结构模式,降低了成本,提高了可靠性,且在统一的下可实现真正的开放式互连系统结构,是一种正在发展的很有前途的计算机控制系统。
目前具代表性的现场总线是PROFIBUS(ProcessFieldbus)。PROFIBUS是由SIEMENS公司推出的一种开放式现场总线标准,1989年成为德国标准DIN19245,1996年成为欧洲标准EN50170,1999年12月被接受为IEC61158的一部分。用于工厂自动化系统三级网络中的底层,即车间级监控和现场设备层数据通信与控制;使用于分散的、具有通讯接口的现场受控设备对底层设备有较高的数据集成和远程诊断、故障报警及数字化要求的系统。
PROFIBUS遵循ISO/OSI模型,其通信模型由三层构成:物理层、数据链路层和应用层。PROFIBUS由三部分组成,PROFIBUS-FMS(FieldbusMessage Specification,现场总线报文规范)、PROFIBUS-DP(DecentralizedPeriphery,分散型外围设备)、PROFIBUS-PA(ProcessAutomation,过程自动化)。其中PROFIBUS-DP已广泛适用于水电站自动化领域。
2PROFIBUS-DP的特性及系统组成
2.1PROFIBUS-DP的特性
PROFIBUS-DP使用物理层,数据链接层和用户接口,用于现场层的高速数据传送。主站周期地读取从站地输入信息并周期地向从站发送输出信息。总线循环时间必须要比主站程序循环时间短。PROFIBUS-DP还提供智能化现场设备所需的非周期性通信以进行组态、诊断和报警处理及复杂设备在运行中参数的确定。
PROFIBUS-DP基本功能和特性如下:
(1)远程离高速通信
支持9.6Kbps到12Mbps的传输速率;12Mbps时大传输距离为100m,1.5Mbps时为200m,还可以用中继器延长;
(2)分布式结构
各主站间令牌传递,主站与从站为主-从传送;每段可有32个站,用连接线可扩展到126个站;
(3)易于安装,开放式的通讯网络;
(4)可靠性高,具备自诊断功能。
PROFIBUS-DP主站分为一类主站和二类主站。一类主站完成总线通信控制与管理,完成周期性数据访问,包括PLC、PC或可做一类主站的控制器。二类主站完成非周期性数据访问,如数据读写、系统配置、故障诊断等,包括操作员工作站(如PC机加图形监控软件)、编程器、HMI等。PROFIBUS-DP从站主要进行输入、输出信号采集和发送,包括PLC或其他控制器、分散式I/O、智能现场设备等。
2.2系统组成
为便于叙述和理解,现组成一个双主站单从站的PROFIBUS-DP网络,如图1所示。具体配置如下:
图1PROFIBUS-DP网络
(1) 硬件:带SiemensCP5611卡的PC机两台,一台配置为一类主站,另一台配置为二类主站;从站为Siemens S7-200系列PLC的CPU224一块,带Siemens EM277DP通讯模块;三个网络连接器;连接线为双绞线。
(2)软件:用于软件编程的STEP7-MICROWIN3.2和用于实现PROFIBUS-DP协议网络配置的SIMATICNET6.0。
3PROFIBUS-DP主站和从站的组态
3.1一类主站的组态
在PC1(一类主站)使用SIMATIC net6.0软件来组态整个PROFIBUS-DP网络。具体步骤如下:
(1)使用SIMATIC程序组中的Configuration Console设定PROFIBUS的模式为ConfiguredMode,插槽号随意,如图2所示:
图2 ConfigurationConsole
(2) 用PC StationWizard进行一系列简单的设置后新建一个工程
设置CP5611的参数:网络类型设为PROFIBUS,站地址为1(也可为其他值,但不能重复,其他站点地址的设定与此类同);加上PROFIBUS-DP总线(DPmastersystem(1)),并把CP5611设为DP-Master(即一类主站)。导入EM277的GSD文件,在视窗右侧的从站设备栏里面就可以找到EM277模块了。将EM277图标拖到DP总线上,站地址为设置2,V存储器偏移量本例设置为4000,根据需要设定EM277的发送和接收缓冲区大小。后将配置结果下载到模块。结果如图3所示:
图3一类主站的组态
至此,本PROFIBUS-DP网络结构一类主站与从站的主从关系已经确立了。下面接着配置二类主站。
3.2二类主站的组态
(1)同样还是在PC1上,在图3的界面中点击图标 (Configure Network),弹出如图4的界面。添加一个SIMATIC PCStation(此时这个PC Station还没有挂到DP网上),并双击它,弹出如图5的窗口(此窗口与图3类同)。手动添加OPCServer和CP5611,槽位随意。将CP5611站点地址设为3,从属于之前添加的DP网,并设定为DP Master Class2(即二类主站),将配置结果下载到模块。点击 ,可看到PC Station挂到DP网上了。
图4 ConfigureNetwork
图5二类主站的组态
(2)现在操作对象转到PC2上。同样运行Configuration Console,设置也与PC1相同。打开PC StationWizard新建一个工程。将CP5611设为DP Master Class 2,站地址设为3,同样要从属于DP mastersystem(1)。将配置结果下载到模块。
3.3从站的组态
为了将EM277作为一个DP从站使用,必须设定与主站组态中的地址相匹配的DP端口地址(之前设定的地址为2)。从站地址是使用EM277模块上的旋转开关设定的。在变动旋转开关之后,用户必须重新启动CPU电源。
EM277输出和输入数据缓冲区驻留在S7-200CPU变量存储器(V存储器)内,输入缓冲区紧紧跟随输出缓冲器。缓冲区的大小是由DP主站组态设定的(之前设定为8Bytes Out/8 BytesIn)。组态后,EM277可接收从主站来的输出数据,并将输入数据返回给主站。主从站缓冲区的关系如图6:
图6主从站的缓冲区
若EM277PROFIBUS-DP从站模块为I/O链中的个智能模块,则它的状态信息从CPU224中的SMB200到SMB249获得;若EM277为第二个智能模块,其状态从SMB250到SMB299获得。只有DP主站才可以组态运行了DP方式下的EM277 DP模块,用户不能通过改写有关SMB存储单元来组态EM277 DP模块的缓冲区大小或位置。
由表1中专用存储器字节的说明,不难写出CPU224的DP通信程序,见表2。
4通过OPC读写PLC数据
OPC(OLE forProcessControl)是过程控制业中的新兴标准,它的出现为基于bbbbbbs的应用程序和现场过程控制应用建立了桥梁。可以通过Siemens提供的OPCServer程序读写PLC中的数据。
(1)一类主站PC1读写PLC
在PC1上打开SIMATIC程序组中的OPCScout,新建一个组名。打开新建组的“OPC-Navigator”,在DP目录下的Slave002就是从站CPU224,M00_I和M00_Q即对应从站的输入和输出缓冲区。将M00_I和M00_Q目录下的变量按需求添加(如图7),确认后OPC就开始运行了。如果变量的“Quality”显示“good”,表示OPCServer程序已经通过PROFIBUS-DP总线协议和PLC建立了连接运行关系。此时不仅可以读取PLC中的数据,还可以向PLC写数据。
(2)二类主站PC2的数据访问
在PC2上同样打开OPCScout,新建组名。在该组名的“OPC-Navigator”下添加二类主站相应的输入和输出缓冲区,确认。PC2就可以访问网络中的数据了,各数据的变化同PC1中的是同步的。
要注意的是:当PC1的OPCScout关闭的时候,PC2的OPCScout对DP网络的数据访问也中断了。这证明了CPU224仅仅从属于一类主站PC1,而二类主站PC2不能控制它(仅能进行数据访问)。
图7OPC-Navigator
5PROFIBUS-DP在水电站中的应用
目前,PROFIBIS-DP总线技术在水电站小型自动化系统中应用较多,如水电站弧门监控系统和机组辅助设备控制系统就大量用到了PROFIBUS-DP网络。这是因为PROFIBUS-DP实时性受到系统规模影响,系统规模越大实时性越差,PROFIBUS-DP总线技术适合于小型自动化系统。
PROFIBUS-DP在信号的传输精度、可靠性和抗干扰性有不俗的表现,其系统成本低、安装简单、维护调试方便且易于扩展。各类传感器和智能设备等都有支持DP网络的标准通信口,硬件资源丰富;DP网络本身灵活多变的主从结构,适应多种控制系统;各类组态软件也都可以和OPCServer建立数据交换,减少了监控系统的开发周期;通过专用的通信协议转换器或工控机,基于PROFIBUS-DP总线的控制系统可以挂靠到工业以太网上,成为综合控制系统的一部分。现在工业以太网的技术有大普及之势,但DP网较高的性价比还是被越来越多的用户所认可。
1 引言
计算机及通讯技术已成为工业环境中大部分解决方案的核心部分,其在系统中的比重正在迅速增加。在一个自动化系统中,交、直流调速器不仅仅作为一个单独的执行机构,而是随着其不断的智能化,它们相互之间及同控制系统之间可以通过各种通讯方式结合成一个有机的整体。西门子变频器USS自由口通信以其通信质量高、成本低廉在自动化系统得到了广泛的应用。本文以USS自由口通信在石油钻机电气传动系统中的实际应用为例,对自由口使用的地址分配,通信程序实现进行了较详细的分析,该思路不仅用于PLC来保证通信质量,对于用语言在PC实现的通信程序编制、提高通信的可靠性都具有一定的借鉴意义。
2 USS通信
2.1USS概况
西门子交、直流调速器采用的USS通讯协议是西门子公司为传动系统开发的通讯协议,可支持交直流驱动器同PC或PLC之间建立通讯联接,适用于规模较小的自动化系统。有以下特点:
(1)用单一的、完全集成的系统来解决自动化问题。所有的西门子交、直流驱动器都可采用USS协议作为通信链路,原先的驱动器间是孤立的,仅有极少量通过硬件电路反馈信号。
(2) 数字化的信息传递,提高了系统的自动化水平及运行的可靠性,解决了模拟信号传输所引起的干扰及漂移问题。
(3)其通信介质采用RS-485屏蔽双绞线,远可达1000m,可有效地减少控制电缆的数量,原系统中需要20芯控制电缆一般在4根以上,现在只需工作电源就可以,从而可以大大减少开发和工程费用,提高可靠性。
(4)通讯速率较高,可达187.5kbps。对于有5个变频器,每个调速器有六个过程数据需刷新的系统,PLC的典型扫描周期为几百毫秒。
(5)它采用与PROFIBUS相似的操作模式,总线结构为单主站、主从存取方式。报文结构具有参数数据与过程数据,前者用于改变调速器的参数,后者用于快速刷新调速器的过程数据,如启动停止、逻辑锁定、速度给定、力矩给定等。具有极高的快速性与可靠性。
2.2 西门子USS通信协议 [1]
(1) 协议概况
●Siemens驱动器所定义的USS协议,是Profibus通信协议的简化,通过其总线可以连接31个节点,传输速率可以达到19.2k比特率,通过主站(PC、PLC)进行控制。
●USS总线上的每个传动装置都有一个站号,主站通过它识别每个传动装置。
●USS可以是主从结构:从站回应主站发来的报文并发送报文。也可以是广播通讯方式:报文发送给所有的传动装置。
(2) 协议说明
所有数据报文都由14个字节组成,是标准的异步报文格式:1个起始位,8个数据位,一个偶校验位和一个停止位。数据报文的结构如下:
主站到从站的报文格式:
从站到主站的报文格式:
(3)USS协议报文描述
●STXSTX是单字节的ASCⅡ STX字符(值为02),表示报文的开始。
●LGELAE是单字节区域,表示报文中LAE区域后的字节数。
●ADRADR是单字节区域,包含从站传动装置的地址::
其中位5是广播位。选择是否将这报文以广播方式发送给总线上的所有驱动器,位0~4是驱动器总线地址。
●BCC BCC是单字节区域,对报文中该区域以前所有的字节进行异或校验。
●IND IND是16位的区域,通用传动装置应设为0。
●PKEPKE是16位的区域,用来控制传动装置的参数读写,定义如下:位0~10为参数号,位12~15为参数读写控制,如2038H,2代表读参数,38H表示十进制ID为56的参数。
●VAL VAL是16位的区域,通过读写参数命令将参数值写到对应的参数ID中。
STW是16位的控制字区域,控制传动装置的运行,如047F表控制电机正向运行。
ZSW是16位的状态字区域,表示传动装置不同的运行状态。
●HSW/HIW HSW是设定电机速度的16位的区域。如4000H对应额定速度的
HIW是读取电机速度的16位区域,可以读出电机速度。如当前转速=(HIW×额定速度)/4000H。
3 自由口设定
3.1钻机传动系统设备配置
多年来,我国钻机市场一直以机械钻机为主,通过柴油发电机带动变速齿轮箱来调节绞车和泥浆泵的转速,效率低下,耗能高,故障率高。随着国际钻机市场电驱动钻机的推广与普及,我国的钻机经历了购买二手旧钻机,进口新钻机到自主生产的过程,在此基础上,钻机也进行了一次大的更新,从模拟电路控制直流传动到数字化的直流传动设备,再到到高性能的具有通信功能的传动设备;在钻机实现自动化过程也经历了由继电器到开关量PLC再到高性能PLC(模拟量+总线通讯)的过程,现阶段钻机设备配置以高性能PLC控制为主,通过通讯功能读取数据和并根据工况改写驱动器的相关数据,这样先进的控制理论(模糊控制、神经网络控制等)就很容易的通过上位机实现,从而控制交直流驱动器实现调速的智能化。该系统通过S7-200CPU226作为主站,五台6SE71系列变频器作为从站,其中650kW的变频器带动绞车/钻机,500kW的变频器两两同步工作,带动1300系列的泥浆泵,参见图1。
图1 USS通讯系统配置
3.2 自由口用户数据存储器[3]
在USS协议中,用户数据存储器分配如附表:
附表
驱动器参数设定区 VB0-VB39共40个字节
发送/接受缓冲区 从VB40开始,用户自由分配
系统数据区 VB4022-VB4095共74个字节
其中驱动器参数设定区主要完成从站数目(VB0)、每个从站LAE长度设定(VB1-VB31)、广播传送方式LAE(VB33)长度、传送时间(VW34),初始化发送/接受缓冲区首地址(VD36)(设定值为VB40-VB4021),其中V表示可变、B为字节、W为字、D为双字。
3.3 用户数据区设定
在USS协议中每个从站需要44个字节,发送/接受缓冲区各占22个字节(对应从站+USS协议(发送+接受)+状态位),其中状态位表示数据发送状态,在该系统中发送/接收首地址设为VB2000,用户数据区以循环方式传送数据时分配如下:
绞车:从站1,地址 VB2000-2043
泥浆泵1的A变频器:从站2,地址 VB2044-2087
泥浆泵1的B变频器:从站3,地址 VB2088-2131
泥浆泵2的A变频器:从站4,地址 VB2132-2175
泥浆泵1的B变频器:从站5,地址 VB2176-2219
以广播方式发送数据时地址如下:
只有发送缓冲区:VB2220-2263,接受缓冲区同上
定义完数据区后,就可以根据每个地址的功能,在PLC编程时写入相应的控制字就可以完成控制功能。
3.4 通信功能设定
CPU处于STOP模式时,自由端口模式为禁止,建立与其它协议的通讯,只有当CPU处于RUN模式时,才能使用自由口模式,这时通过自由口控制字SMB30来完成设置,如:MOVB16#49,SMB30就将自由口0设为自由端口协议,波特率9600kbps,数据位为8,偶校验。
4程序编制[2][3]
系统功能由主程序OB1和三个子程序SBR0、SBR1和SBR2组成。图2列出主要程序段的工作流程。
图2 主要程序段的工作流程图
(1) OB1:完成循环调用子程序功能
(2) SBR0:系统初始化
(3) SBR1:通讯中断/事件调用(中断0~中断7,根据通信协议完成数据的传送和接收功能)
(4)SBR2:按照前面的分配地址和要实现的功能编写功能程序,实现要求的输入输出信号间的逻辑功能、数字滤波、PI调节,以及变频器参数的读写,控制字和速度给定的发送,变频器工作状态的读取等功能。
(5) 中断0:完成发送/广播的初始化,监视发送过程、监视发送延时、发送错误
(6) 中断2:发送完成
(7) 中断3~6:接收到基本接收缓冲区后,进行校验,校验数后翼数据块的方式将数据发到当前站的数据接收缓冲区。
(8) 中断7:接受任何一个字符超过时间,执行中断7,进行状态复位,结束中断。
5 变频器设定[4]
变频器选用MASTERDRIVER6SE71系列工程型变频器,工作电机为永济电机厂生产风冷方式的鼠笼式三相异步交流变频电机,变频器控制方式采用矢量控制控制,负载模式选为标准,通过变频器进行电机识别后即可使用,通信接口对应接口板CUVC上的X101端子10(RS485P),11(RS-485N),电机起停控制位P554.1=6100,其余控制位(停车方式、旋转方向等)依次类推。P734.1~16读取需要采集的电机参数在变频器中的连接字地址编号;P918.0/从站地址和PLC设定保持一致;P053=34(PMU+SST2);控制字的第十位必须为1来激活通信;再将通信所发控制字及给定发到接口地址……;在总线起端和末端接终端电阻。
为了降低电磁干扰,采用屏蔽的双绞线,其中屏蔽线单端接地。
6结束语
通过使用和比较,采用USS自由口通信不需任何附加板,就可实现变频器数据的存取,通信质量高,以低廉的成本实现自动化系统。从而可以大大减少开发和工程费用,和以前的继电器控制相比,降低了系统的电气复杂性(很多逻辑和保护功能都要靠继电器间的相互锁定来实现,实现复杂,故障率高,检修时间长),系统的逻辑性能得到较大的提高,提高了产品的的可靠性,降低了由电气故障造成的停机时间。