西门子6ES7222-1BD22-0XA0使用选型
三、系统软件设计
本嵌入式控制系统的编程分为两部分,一是PLC软件编程,实现对工作单元的现场控制;二是操作站触摸屏的编程,触摸屏根据传感器获取的测量数据判断目前的工作状态,将控制指令发送给各单元的PLC,生成交互式的人机对话界面。
(一)PLC编程
1.控制流程描述
分析仪器单元的PLC负责气路和量程切换的操作,CVS单元的PLC主要对CVS系统进行流程控制,实现自动清洗、自动采样等一系列功能控制。以CVS系统为例,PLC控制CVS单元排气过程,将气囊中的废气排空;控制清洗过程,进行管路清洗;后控制自动采样,将背景气体和稀释气体分别抽到两个气囊,为分析仪器的气体分析做好准备。上述过程主要包含对泵、阀开关和定时延时的控制。控制过程如图3所示。
图3 CVS系统PLC控制流程臣
2.控制程序
整个控制程序我们采用程序代码编程,它较之梯形图、功能模块灵活、方便,结构紧凑。主程序模块为:
LD SM0.1 //初始化,调用子程序0
CALL SBR_0
S M2.0,4 //设置程序执行标志位
LD M0.1 //启用等待程序
A M2.0 //M2.0设为1
LPS
LD M8.1 //有复位请求
ALD
CALL SBR_I//调用子程序1
//SBR_0:
LD SM0.0
….. //初始化泵阀状态
CRET
,,SBR_I:
LD SM0.0
LD M3.0
….. //控制CVS工作流程
CRET
(二)触摸屏控制程序设计
系统中操作站我们采用触摸屏实现交互式人机对话。包括5个主要界面:系统主界面、CVS界面、分析仪器界面、报表和历史数据查询打印界面、手动界面。设计以按钮形式简便、直观地来控制PLC运行,有显示操作状态和数据、故障报警以及报表查询等功能。
四、结束语
整个系统完全满足汽车生产厂家现场监测汽车尾气污染物含量的要求。通过简单直观的人机对话界面实现复杂的操作,克服以往监测系统可靠性低、故障率高、操作复效率低等缺点,从而有效地提高了我国汽车生产厂家生产管理水平。
目前,实现对机动车排放污染进行有效控制已成为我国环境保护一项刻不容缓的任务,需要在生产中对汽车尾气污染物进行检测。本文就一种符合EU-2标准,基于嵌入式bbbbbbsCE操作系统和组态王6.0组态软件的集工况模拟、样气采集、样气分析于一体的汽车尾气污染物智能检测系统进行介绍。
一、系统综述
整个系统由中央控制单元、底盘测功机、尾气取样单元、分析仪器单元以及相关辅助设备组成。底盘测功机模拟汽车的工况,尾气取样系统对样气进行jingque的定量采集,后由分析仪器单元对样气中的污染物浓度加以定量检测,中央控制单元实现对整个系统的自动控制。其中中央控制单元采用嵌入式系统作为核心控制单元,系统操作站为运行bbbbbbsCE嵌入式操作系统和组态王6.0嵌入版组态软件的工控机,负责发布命令给作为现场控制及命令执行元件的PLC。工控机与远程上位PC之间采用TCP/IP协议进行通讯。
精简的bbbbbbsCE嵌入式操作系统使运行于该操作系统上的嵌入版组态王6.0组态软件的执行效率很高,完全可以满足设备现场运行的需要。
(一)工作原理
图1 汽车尾气检测系统示意图
系统总体示意图如图1所示。打开引擎的汽车在底盘测功机上模拟各种行驶工况,其尾气排放的污染物在鼓风机作用下经环境空气滤清器后进入尾气取样系统采样器,进行定容稀释取样(CVS)。分析仪器分别从背景气袋中、稀释排气气袋取样气进行分析,测量得出污染物的体积浓度。汽车尾气中污染物的排放值由以下公式进行计算:
mi=1/S*V*di*ci/106 (i for HC、NOx、CO)
式中:mi一排出的污染物的质量;S一行使距离;V一温度为273K,大气压力为101.33KPa的基准条件下稀释排气总容积,单位:m3;di—各种污染物在温度273K,大气压力101.33KPa时的密度;dco=1.25kg/m3;dHC=0.619kg/m3;dNO2=2.05kg/m3(排气中NOx的浓度用NO2当量表示);ci—稀释排气中污染物的容积浓度,10-6。
(二)控制系统的工作过程
工控机通过CVS系统和分析单元的传感器获取测量数据,通过数据采集模块转换为符合RS-485规范的数字信号,传送给触摸屏,触摸屏将测量数据通过TCP/IP协议传送给PC机(上位机),完成数据处理工作。触摸屏根据采集信号的数值判断目前的工作状态,将控制指令发送给分析单元和CVS系统的PLC。分析单元的PLC主要完成对分析仪器进行一系列气路切换、量程转换的操作,CVS系统PLC主要对CVS进行流程控制,实现自动清洗、采样等一系列功能。控制指令经PLC处理后,转换为直接的继电器开闭信号,实现打开和关闭CVS系统电磁阀、取样泵的任务。配电箱还为风机提供了380V动力电的开关,可手动控制风机的启动与停止。控制系统结构框图如图2所示。
二、系统硬件组成
为了确保系统的准确性和可靠性,本文选用了工控领域中稳定可靠的bbbbbbsCE嵌入式操作系统作为工控机的控制核心。数据采集模块、PLC、继电器等元件性能稳定,采集和控制精度高,响应速度快。
(一)工控机
作为操作站的工控机基于嵌入式操作系统bbbbbbs CE和嵌入式组态软件组态王6.0(128点)开发的客户端应用程序。bbbbbbsCE嵌入式系统的优越性在于其设备管理简单高效,支持不同类别的设备,支持即插即用的管理模式和设备节能控制;处理系统的输入输出具有实时响应能力。
组态王嵌入版6.0提供了基于嵌入式操作系统的开发平台,由于组态王嵌入版6.0的稳定性较高,占用系统资源较小,组态软件本身提供大量通用设备的驱动程序,开发周期短,故选用组态王嵌入版6.0作为开发工具。
硬件选用的是ADVANTECH-研华TPC064触摸屏(嵌入式一体化工控机),其主要系统参数如下:
液晶显示器尺寸:5.7"TFT;CPU主频:ARM9266MHz;内存:64M;CF卡:64M。
触摸屏对外数据传输接口主要有四个RS232接口、两个RS485接口、一个USB接口,1个10/100M网络接口。
采用工控机的方式,可多串口输入,处理速度快、效率高,触摸屏有良好的人机对话界面,操作简便、直观,满足了检测设备实时操作和实时显示的功能。
(二)PLC
本文选用SIMATICS7-200系列PLC,主模块与工控机通过RS-232串口通讯,用step7-Microwin实现软件编程。PLC作为一种专门用于工业生产过程控制的现场设备,具有可靠性高、适应性强、通讯和编程方便、结构模块化的特点。
PLC执行操作站发出的指令并进行报警处理等简单的运算。整个系统中PLC控制的硬件开关量共有24个,其中分析仪器单元有5个三通电磁阀和一个取样泵,CVS单元有7个两通电磁阀、8个三通电磁阀和三个泵。
(三)传感器与数据采集模块
系统中分析仪器单元测量浓度值经后面板的输出端子以模拟量输出,CVS单元的流量计量单元测量数据由传感器以模拟量输出,具体的传感器包括:
标准长径喷嘴流量计:BYW-S-80,4 m3/min~8 m3/min,喷管直径80mm,用于主流道恒定流量测量;
数字压力变送器:BYD-8,标准长径喷嘴流量计前端压力测量,输出信号4 mA~20mA DC,24V;
电容式压差变送器:1151DP3E22M183,标准长径喷嘴流量计前端、后端压力差测量,输出信号4-20mA DC,24V;
防爆型数字温度变送器:BWD-8,标准长径喷嘴流量计后端温度测量,输出信号4 mA ~20mA DC,24V,量程0~50℃;
压力变送器:CS20FUCIIIERC3Lm(3)A,用于控制样气取样袋压力并保护之,输出信号4 mA ~20mA DC,供电范围15V ~28VDC。
数据采集模块:研华16通道A/D PCL-818数据采集卡。
(四)通讯模块
系统通讯方式分为两种:串口通讯和TCP/IP协议通讯。PLC和数据采集模块与工控机之间为串口通讯;工控机与PC机之间采用TCP/IP协议进行通讯。硬件参数如下:工控机网卡:1个10/100M网络接口;PC机网卡-TP-bbbb,100M。
前言
以往的油石超精机床是采用继电器进行控制的,控制部分元件较多,体积庞大,接线复杂,且可靠性不高,经常出现故障。近年来,机床行业的自动控制水平在逐步提高。现决定对油石超精机床进行改造升级,用PLC取代传统的继电器顺序控制,工作周期变短,使工作更可靠,编程简单,诊断方便,抗干扰能力强。
1电气控制要求
油石超精机床的工作原理是把加工工件放在两个导辊之间,工件会匀速向固定的方向运动,超精头在气压下振动的来摩擦工件表面,提高工件的光洁度和圆度等。手动调整好机械的各项指标,用旋转开关把工作方式调节到自动,按下自动启动按钮,PLC开始运行,在程序控制下,冷却启动后导辊开始在变频器无级调速控制下旋转,开始加工工件。
机床配有紧急停止和警示功能,一旦发生机械故障用户可以方便地按急停按钮来停止机床动作;由于过载等原因出现问题,会点亮报警灯来提醒操作者。
2系统硬件设计
2.1主电路的设计
导辊采用变频控制,PLC控制继电器的吸合作为变频控制正转的条件,而导辊调速采用电位器进行模拟控制;冷却泵由PLC控制接触器KM的通断来实现起停;油石的上升和下降由PLC控制电磁阀来实现。
2.2 PLC系统购置
根据系统的输入、输出点的要求,选用20点的三菱PLC即可以满足要求。
3系统软件设计
3.1零件加工可以方便的进行手动/自动转换,当转换开关旋至手动状态时,自动不起作用,系统通过操作面板上不同的手动控制按钮来完成机床调整或手动加工;类似的转换开关旋至自动状态时,按下启动按钮,PLC则按预先设计的符合工艺要求的程序运行。系统流程图如图1所示。
机床控制系统中,手动部分占用6个输入点,用于零件自动加工前的调整或手动加工;自动控制部分涉及6个输入点,用于零件的程序顺序加工。
自动控制部分的输入、输出点的分布如表1所示
输入设备 输入地址 输出设备 输出地址
过载保护QM X000 报警灯HL Y000
紧急停止SB1 X001 导辊启动KA Y001
复位SB2 X002 冷却启动KM Y002
自动启动SB3 X003 油石上升YV Y003
自动停止SB4 X004
接地保护 X005
表1
自动控制的程序如图2所示,为了避免启动时的电流冲击,用延时0.5 s来避开冷却泵与导辊电机启动。
3.2 故障检测与报警电路
一旦机械部分或控制电路发生故障,报警灯会被点亮,油石抬起来避免误动作造成损失;故障解除后,可按复位钮清除报警。报警的程序如图3所示。
4
PLC有丰富的指令集,编程非常灵活,控制相当方便。用PLC对超精机床进行升级改造后,系统的硬件结构简单,自动化程度高,加工效率高,维修方便,可靠性大大提高。
艾默生变频器输出脉冲频率信号Y2在AB PLC中的应用。 EV1000变频器Y2是开路集电极输出,可定义为32种功能输出(0—19是输出开关量;20—31是输出脉冲频率)[1]。由于Y2是开路集电极光藕隔离输出,应用电路比其他输出稍为复杂,再加上EV1000的模拟量功能设计十分完善,一般用户很少应用这个端口。 但在某些小型PLC的应用中,如果使用得法,将会收到事半功倍的效果。 例如:为了测量变频器输出频率,常用方法是使用一个模拟量输入端口。但小型PLC本机模拟量I/O口十分有限,却具有几个高速计数器(表1)。这时,如果将Y2定义为输出频率,使用高速计数测量频率,就节约了宝贵的模拟量口,有时将大大降低了成本,提高产品竞争力。
本文以AB公司1762-L24BWA为例介绍应用方法。接线见图1:Y2通过4.7K电阻接到外部24VDC电源,脉冲信号从IN0-COM输入到PLC,幅值为24V。 EV1000-4T0037变频器参数设置如下:
频率计算的方法是:计数器HSC:0在1秒时间内累计进入IN0的脉冲数目,除200后所得结果F8:0即为变频器输出频率。在正常计数时,PLC端口IN0的LED灯会快速闪动。测量误差取决于EV1000参数F7.32和计时器T4:1的时基。本例,大误差为±0.5Hz.
小结:不同品牌的PLC应用程序大同小异,但基本思路是一样的,本方法在小型PLC应用中具有实际意义,当模拟量端口紧缺的时候,尤为实用。注意EV2000变频器的Y2只能选择0-19,可用D0代之。
|