西门子模块6ES7231-7PC22-0XA0详细资料
型材辊压生产线是生产汽车门、窗等型材的关键设备,其剪切系统自动化程度及定尺精度的高低将直接影响企业生产效率及产品质量。型材剪切一般有定尺停剪和飞剪两种。定尺停剪控制简单,定尺精度高,但生产效率低,特别是对于有缝焊机的辊压线,频繁起停将会影响焊机焊极的使用寿命;飞剪控制比较复杂,方法也较多,相对简单的一种就是由型材本身带动剪切工作台实现飞剪的方法[1~2]。这种剪切方法只适用于刚性较大的型材,而对于截面积较小的型材必须加牵引机,控制复杂。针对上述不足,我们设计了一种采用直流伺服机驱动、PLC控制剪切工作台实现连续不停机剪切的飞剪控制系统。应用结果表明,该系统运行可靠,同步精度较高,定尺误差较小,适用于剪切各种规格的型材,不仅提高了企业生产效率及产品质量,具有广泛的推广应用价值。
1 采用伺服机的型材辊压生产线飞剪控制系统的组成
型材飞剪系统是一种连续剪切型材的加工机械,相对于定尺停剪系统,可提高生产效率。采用伺服机的型材辊压生产线飞剪控制系统原理如图1所示。
图中,S1、S2、S3为接近开关,S4、S5、S6为滚轮式行程开关,负责工作台的终端停车及超程保护。伺服机通过丝杠拖动工作台运动,由液压缸带动刀具完成冲切任务,其运行过程如下:
(1)型材以恒速向前移动,由测长轮测定型材长度,当到达预定值时,起动伺服机,工作台开始移动。
(2)当工作台与型材的移动速度达到同步时,液压缸动作,刀具开始冲切,接近开关S2检测到冲切到位信号时,刀具抬起。
(3)工作台继续移动,当刀具回到初始位置时,接近开关S1有信号输出,伺服机反转,工作台高速返回。
(4)到接近开关S3位置时,工作台停止,根据切割的根数,决定是继续运行还是停车。
2 飞剪伺服同步控制系统的组成与参数计算
伺服同步控制系统由直流伺服驱动器、伺服同步控制器、PLC及测长轮等组成,其控制系统结构框图如图2所示。
测长轮光电编码器输出的脉冲信号分两路,一路送给PLC的高速计数口,做测长用;另一路先经光电隔离及F/V环节将频率信号转换成电压信号,再经放大器放大后,作为伺服驱动器的速度给定信号。连续剪切时,必须保证工作台的移动速度与型材线速度严格同步,在F/V变换器与伺服驱动器参数确定的情况下,放大器放大倍数的确定将是实现伺服同步的关键。已知系统参数如下:
F/V环节输入输出特性:Kf=(0~25kHz)/(0~5V);
伺服驱动系统:大给定电压
额定转速ne=1500r/min,转速反馈系数α=
/ne=1/300(V.min.r-1);
测长轮直径:DL=110mm=0.110m;
光电编码器每转脉冲数:N=5000;
型材大移动速度:Vm=15m/min=0.25m/s;
丝杠节距:T=10mm=m。
当型材以线速度VL(单位为m/s)向前移动时,测长轮光电编码器输出脉冲的频率为
经F/V及放大环节加到伺服驱动器输入端的速度
给定电压为
式中KP为伺服同步控制器放大环节放大倍数。对应的工作台移动速度为
式中 n为直流伺服电机转速。
由Vg=VL,解得
将已知参数代入,即可求得放大器放大倍数KP=6.908。为了保证同步精度,放大器中调节放大倍数的电位器RP1选用多圈精密电位器,放大器选用LF356,光电隔离选用TLP5212。
伺服驱动器的速度给定除同步给定信号U*nl外,还设有工作台高速返回、工作台前向点动和后向点动3个给定电位器。设置点动功能的目的是当需要定尺停剪时,可使工作台处于有效行程内的任意位置。4种给定信号通过PLC的Y117(伺服机速度同步给定)、Y116(工作台高速返回)、Y120(工作台前向点动)和Y121(工作台后向点动)进行控制。
3 PLC控制系统的组成及软件设计
型材辊压飞剪系统采用日本富士NB1系列可编程序控制器控制,可实现定尺停剪、飞剪及剪切长度、剪切根数的自动控制,具有自保护、自诊断和报警等功能。剪切长度及剪切根数等参数由PLC通过串行通信从上位机读入。PLC剪切控制系统的输入信号包括:测长轮光电编码器LF输出的电脉冲(A、B两相),接近开关S1~S3,行程开关S4~S6,伺服准备好信号VRDY;输出信号包括:伺服上电SON1,伺服使能ENBL(Y115),伺服速度给定Y117、Y116、Y120、Y121,冲切电磁阀、抬起电磁阀、加速阀及溢流阀等,其PLC外部接线图略。控制流程如图3所示。
系统通过对光电编码器LF输出脉冲的检测来计算对应的型材长度。NB1系列U型PLC的高速计数指令功能是当条件满足时发出一中断信号,并控制相应的动作。由于系统剪切长度是可以改变的,故需要通过PLC中算术运算将剪切长度转换成对应的脉冲数。
为了使系统能够安全可靠工作,对软件和硬件均作必要的处理。软件主要是延时保护,因为系统工作过程主要是顺序动作。当某一工序到下一工序的时间超过确定值时,说明该工序的相关部分出现故障,命令系统停止运行,等候维修。图中长度检测到延时是根据型材的剪切长度与轧制速度的比值来确定;剪切到位和刀具抬起延时是根据冲切刀具动作的快慢来确定,本系统取3s;Y115为伺服使能信号,延时打开的目的是保证工作台高速返回停车时有足够的制动时间。硬件是采用4个保护开关,前两个是接近开关S1、S2,主要是检测型材是否切下和刀具是否抬到位,若未按规定动作,则视为故障,系统停止运行;另两个是限位开关S4、S6,作用是在前面保护均失效,工作台到达S4(或S6)位时,强制系统停止运行。
本系统充分利用了PLC的逻辑运算、数值处理、高速计数、中断及沿触发等功能,使整个系统控制方便灵活,外围设备减少,并能大大缩短现场的安装和调试周期。
实际调试过程中发现,连续飞剪的定尺精度往往不如定尺停剪的精度高,其主要原因如下: (1)测长轮与型材之间有相对滑动,使计数不准,可设法增加测长轮与型材之间的摩擦力,如增大气阀压力等;
(2)工作台每次返回的初始位置不一致,可增加一初始位置定位系统,提高位移控制精度,但系统要相对复杂一些;
(3)伺服同步精度低,剪切时工作台相对于型材有相对运动,可适当调整电位器RP1。
(4)由于伺服同步控制器在转速环外,系统元件(包括放大器、F/V变换器和电阻等)参数值随环境温度的变化对定尺精度有一定的影响,可在此基础上增加一位置环。
1 系统简介
为改善生产环境,沱牌公司投资清洁水技改工程并建成一座日产水2.5万顿的供水系统,分别建设了抽水泵系统、加压泵系统和高位水池。根据公司用水需求特点,从抽水泵系统过来的水一部分直接供给生产用水部门,一部分则需通过加压泵输送到高位水池,而供给生产用水部门的水压与供给高位水池的水压相差较大。高位水池距抽水泵房较远达十多公里,高位水池的液位高低和加压泵系统的设计以及如何与抽水泵系统“联动”也是较难解决的。
鉴于以上特点,从技术可靠和经济实用角度综合考虑,我们设计了用PLC控制与变频器控制相结合的自动恒压控制供水系统,通过主水管线压力传递较经济地实现了加压泵系统与抽水泵系统“远程联动”的控制目的。
2 系统方案
系统主要由三菱公司的PLC控制器、ABB公司的变频器、施耐德公司的软启动器、电机保护器、数据采集及其辅助设备组成(见图1)。
2.1 抽水泵系统
整个抽水泵系统有150KW深井泵电机四台,90KW深井泵电机两台,采用变频器循环工作方式,六台电机均可设置在变频方式下工作。采用一台150KW和一台90KW的软起动150KW和90KW的电机。当变频器工作在50HZ,管网压力仍然低于系统设定的下限时,软起动器便自动起动一台电机投入到工频运行,当压力达到高限时,自动停掉工频运行电机。一次主电路接线示意图见图2所示。
系统为每台电机配备电机保护器,是因为电机功率较大,在过载、欠压、过压、过流、相序不平衡、缺相、电机空转等情况下为确保电机的良好使用条件,达到延长电机的使用寿命的目的。
系统配备水位显示仪表,可进行高低位报警,通过PLC可确保取水在合理水位的水质监控,也保护电机制正常运转工况。
系统配备流量计,既能显示一段时间的累积流量,又能显示瞬时流量,可进行出水量的统计和每台泵的出水流量监控。
2.2 公司内不同压力供水需求的解决
为稳定可靠地满足公司内部分区域供水太力(0.4~0.45Mpa)低于主管网水压力(0.8~0.9Mpa)的要求,配备稳压减压阀来调节,可调范围为0.1~0.8Mpa。
2.3 加压泵系统
由于抽水泵房距离高位水池较远,直接供水到高位水池抽水泵的扬程不足,为此在距离高位水池落差为36米处设计有一加压泵房,配备立式离心泵两台(一用一备)电机功率为75KW,扬程36米。该加压泵的控制系统需考虑以下条件:
(1)若高位水池水位低和主管有水,则打开进水电动蝶阀和起动加压泵向高位水池供水;
(2)若高位水池水位满且主管有水,则给出报警信号并关闭加压泵和进水电动蝶阀;
(3)若主管无水表明用水量增大或抽水泵房停止供水,必须开启出水电动蝶阀由高位水池向主管补充不。
像抽水泵一样,我们为加压泵配备了软起动器和电机保护器,确保加压泵长期可靠地运转,配备了高位水池的水位传感器和数显仪和缺水传感器。
为保证整个主水管网的恒压供不,当高位水池满且主水管有水时,加压泵停止,此时主管压力将“憋压”,终导致主管压力上升,并将此压力传递到抽水泵房,抽水泵的控制系统检测到此压力进行恒压变频控制,进而达到整个主管网的恒压供水,这是整个控制系统设计的关键。
3 系统实现功能
3.1 全自动平稳切换,恒压控制
主水管网压力传感器的压力信号4~20mA送给数字PID控制器,控制器根据压力设定值与实际检测值进行PID运算,并给出信号直接控制变频器的转速以使管网的压力稳定。当用水量不是很大时,一台泵在变频器的控制下稳定运行;当用水量大到变频器全速运行也不能保证管网的压和稳定时,控制器的压力下限信号与变频器的高速信号被 PLC检测到,PLC自动将原工作在变频状态下泵投入到工频运行,以保持压力的连续性,将一台备用的泵用变频器起动后投入运行,以加大管网的供水量保证压力稳定。若两台泵运转仍,则依次将变频工作状态下的泵投入到工频运行,而将另一台备用泵投入变频运行。
当用水量减少时,表现为变频器已工作在低速信号有效,这时压力上限信号如仍出现,PLC将工频运行的泵停掉,以减少供水量。当上述两个信号仍存在时,PLC再停掉一台工频运行的电机,直到后一台泵用主频器恒压供水。控制系统设计六台泵为两组,每台泵的电机累计运行时间可显示,24小时轮换一次,既保证供水系统有备用泵,又保证系统的泵有相同的运行时间,确保了泵的可靠寿命。控制系统图见图3。
3.2 半自动运行
当PLC系统出现问题时,自动控制系统失灵,这时候系统工作处于半自动状态,即一台泵具有变频自动恒压控制功能,当用水量不够时,可手动投入一台或几台工频泵运行。
3.3 手动
当压力传感器故障或变频器故障时,为确保用水,六台泵可分别以手动工频方式运行。
4 实施效果
实际运行证明本控制系统构成了多台深井泵的自动控制的经济结构,在软件设计中充分考虎变频与工频在切换时的瞬间压力与电流冲击,每台泵均采用软起动是解决该问题关键。变频器工作的上下限频率及数字PID控制的上下限控制点的设定对系统的误差范围也有不可忽视的作用。
①采用变频恒压供水,消除了主管网压力波动,保证了供水质量,节能效果明显,并延长了主管网及其阀门的使用寿命。
②用稳压减压阀经济地解决了不同用水压力的问题。
③拓宽运用变频恒压控制原理,较好地解决了加压泵房与抽水泵房的远程通讯总是并达到异地连锁控制的目的。
④在抽水泵房设置连续液位显示,并将信号传与PLC,防止泵缺水烧坏电机,设定的取水位置,确保水的质量。
⑤电机既有电机保护器,又有软起动器,克服了起动时的大电流冲击,相对延长了电机制使用寿命。
⑥由于采用PLC控制的压力自动控制,可以实现无人远程操作,系统的PLC预留有RS485接口,可与公司总调度室计算机网络进行连接。
⑦由于系统采用闭环恒压控制,电机在满足主水很容易网的压力的前提下,节能效果显著,年节电61万度,折合为人民币36万元。
⑧通过采用变频器控制,可在不同季节、节假日、日夜及上下班等全面调控水量,按日节水100吨计,则年可节水36500吨。
机床PLC数据采集及条码识别打印网络集成工程,客户有3000余套机床,机床的自动控制主要通过PLC实现,每台机床的控制分别由单个的PLC控制。PLC使用产品有KOYO公司的SN32DRB、SM16/24,B&R公司的PLC,SIEMENS公司的S7-300(PROFIBUS)等。主要为KOYO公司的SN32DRB、SM16/24。SN32DRB、SM16/24都有RSC232和RS485接口,RS232接口接文本显示器MD-02L。公司已布好有管理以太网网络。
机床PLC数据采集及条码识别打印网络作为多种业务的传输与交换平台,承担着数据采集、自动控制及其它数据业务信号的汇接和传输任务。从拓扑结构上,整个网路是环型结构互连的准星型网络结构,如图所示。其中,控制中心是由七台KIEN6000-2S组成的冗余环网,作为网络的核心层;分别采用单模光缆与七个厂区各骨干节点相连接;使用双光纤备份链路,每个厂区都有一个KIEN 6000-2S和16个KIEN 1000–8TX组成的100M/S冗余工业环网,使用双绞线连接成环。
我们选用東土电信公司的两层交换工业以太网交换机KIEN6000-2S和KIEN 1000-8TX,组成环型网络与星型相结合。
根据光缆的铺设情况,此种网络结构为星状网络结构。在每个厂区MOUDBUS转以太网模块、CCM协议或无协议通讯转以太网模块分别接到厂区内的工业冗余环网上,相关的控制计算机、控制器等分别连接到冗余环网上。工厂内部的冗余环网是由KIEN6000-2S和KIEN 1000-8TX连接组成,使用KIEN6000-2S的1#、2# RJ45口与KIEN 1000-8TX的4#、8#口连接成一个双绞线冗余环网,切换时间为300MS,通过KIEN6000-2S的两个光口以冗余的方式与控制中心的一台KIEN 6000-2S相连,控制中心采用七台KIEN 6000-2S形成的冗余环网,他们之间也是用双绞线连接成环,使用KIEN 6000-2S的1#、2#口即可。每个KIEN6000-2S的两对光纤口分别用来连接七个厂区环网,在局端监控中心到每个监控点之间单根纤断裂时,可自动切换到备用通道实现业务的不间断传输。双电源的冗余备份、光口/电口自动故障保报警都显示了在工业场合上其他交换机所不能达到的强大网络优势。使用强大网络管理功能对整个网络系统进行管理。
在现今的竞争趋势下,贯穿整个制造领域流程形成了对自动化的巨大需求, 推动这一需求不断增长的正是对更高产出和低耗的效率追求。在为客户实现价值和提升投资回报率的过程中,自动化程度无疑是个决定性的关键因素。为此,在目前竞争激烈的汽车市场中,作为一条出路,应当考虑运用性价比更高的基于计算机技术的测试方案来改进传统高耗费的基于PLC的装配线,大幅度提升工作效率,生产出更加理想的产品。
NI的系统联盟商ABCO自动化公司作为制造组装和测试自动化的行业先锋,曾应一家汽车传感器制造商的要求开发一套全线组装物料板和测试机械。在整个装配流程中负责制造和测试每一个传感器,对于制造商所要求的无瑕疵标准是否能够达成,起着决定性作用。
使用NI产品以满足系统各项要求
系统要求包括传感器组装量提高到每六秒钟一个部件,并且必须可以和现有的Allen Bradley公司的基于可编程逻辑控制器(PLC)的系统兼容。这个项目是先进技术升级的完美。现在,工程师们可以实现传统的PLC系统与更加高效低耗且数据处理能力zhuoyue的计算机技术之间的无缝结合。
这个项目包括下列大型、指定的机器部分,这两部分都使用精度联接标定传送带:
• 一部14站组装和校验线
• 一部10站终测试线
在阶段的14站的组装和校验过程中,系统会略有余量地浇筑部件并传载至传送带系统,在那里部件被组装、校验、外观检查和焊接。借助于多个DENSO机器人,系统将组装的传感器传载至10站式测试线做终检测,后负责取回。
测试阶段,我们所有的系统选用的是NI可编程自动化控制器(PAC)平台,从而实现速度、准确性和协同工作的能力。通过使用NI PXI-1042机箱和一台NIPXI-8186控制器和数组NIPXI-6070E数据采集模块,我们从一台联接到一个以一定转速运转的音轮的编码器获取波形数据。系统分析了波形数据的周波、峰值和低值和其他决定合格标准的参数。我们将合格的部件送去包装,把那些不合格的单列起来,标注和退回处理。
NI PAC(可编程自动化控制器)和LabVIEW提升了性能,降低了成本
项目成功的一个关键因素是LabVIEW OPC的能力和与PLC的协同工作的能力。客户要求新的系统必须和多种第三方模块以及电源有着协同工作的能力。运用NI LabVIEW DataSocket技术以及Allen Bradley公司的RSLinx OPC服务器,我们将NI可编程自动化控制器(PAC)硬件和传统PLC相集成从而实现了对于全部数据的监控和控制做到天衣无缝。对于这项艰巨的工作而言,NI产品给Allen Bradley公司的硬件产品带来的使用上的便利大大地节省了我们宝贵的编程和集成的工作时间。从而,我们为客户实现了性能提升和成本节约。
注: NI系统联盟商是一个商业实体,它独立于NI并且与NI没有代理、合伙以及合资关系。 所列出的公司名称和产品均为其公司商标或商号。