西门子6ES7223-1HF22-0XA8详细解读
某机械设备公司开发的热封切袋机是一种普遍使用的包装机械,该产品自动化程度高,连续生产时间长,对控制系统稳定性有很高要求。在开发过程中,北京凯迪恩的工程师配合厂家技术人员对工艺和机械设备进行了深入研究,终成功开发了以KDN-K3系列PLC(CPU306)和触摸屏为核心的控制系统,经连续生产测试,完全满足设计指标。
一、系统输入
由于采用触摸屏作为人机介面,物理输入点较少。
1、一个光电开关,用于检测定长制袋标志,接I0.3作为上升沿触发中断控制定长。
2、设有急停开关,保护系统。
二、系统输出
1、控制五个汽缸的电磁阀。
Q0.4批号汽缸电磁阀
Q0.5切袋汽缸电磁阀
Q0.6封口汽缸电磁阀
Q0.7冲孔汽缸电磁阀
Q1.0贴纸汽缸电磁阀
Q1.1报警
2、控制两台步进电机
Q0.0拉膜电机脉冲
Q0.2拉膜电机方向
Q0.1拉纸电机脉冲
Q0.3拉纸电机方向
三、工艺流程及要求
步骤A:
1、1、调整薄膜位置与光电开关灵敏度。
2、2、按下触摸屏上的启动按钮后,拉膜电机与拉纸电机正转前进,拉纸长度到达时,拉纸电机停止。由于薄膜上有很多印制文字拉膜电机在拉膜长度快结束时,光电开关才可检测定长制袋标志,这时若光电开关发出信号拉膜电机停止。
3、3、拉膜电机与拉纸电机均停止后,五个汽缸电磁阀通电,按不同的定时时间断电。
4、4、5个定时均结束,即5个气缸电磁阀均断电,气缸抬起延时结束,拉膜电机与拉纸电机正转前进,启动新循环。
步骤B:
1、1、触摸屏上设有“透明/有色”开关,用于选择有无光电检测。
2、2、触摸屏上设有“手动/自动”开关,手动时五只汽缸电磁阀可单独动作。拉膜电机与拉纸电机均可正反转点动。
3、3、制袋数量到达预警值时报警,到达设定值时报警结束,清计数值重新计数。显示制袋计数总产量。
4、4、在触摸屏上按自动转手动时或按停止时,应立即停止运转。
5、5、可设定拉膜与拉纸长度(毫米)与速度(毫米/秒)。
拉膜与拉纸的胶辊直径、电机每转脉冲数变化时,PLC内部应能自动换算。五个汽缸电磁阀定时时间设定。
四、系统
1、由于系统中涉及步进电机、触摸屏通讯、感性电磁阀等设备,柜内布线时应注意各种线缆的走线,以避免干扰。
2、应正确选择步进电机与驱动器。
3、应注意机械部分的协调性及光电开关灵敏度。
一、前言
中央空调系统是现代大型建筑物不可缺少的配套设施之一,电能的消耗非常大,约占建筑物总电能消耗的50%。由于中央空调系统都是按大负载并增加一定余量设计,而实际上在一年中,满负载下运行多只有十多天,甚至十多个小时,几乎绝大部分时间负载都在70%以下运行。通常中央空调系统中冷冻主机的负荷能随季节气温变化自动调节负载,而与冷冻主机相匹配的冷冻泵、冷却泵却不能自动调节负载,几乎长期在负载下运行,造成了能量的极大浪费,也恶化了中央空调的运行环境和运行质量。
随着变频技术的日益成熟,利用变频器、PLC、数模转换模块、温度传感器、温度模块等器件的有机结合,构成温差闭环自动控制系统,自动调节水泵的输出流量,达到节能目的提供了可靠的技术条件。
二、问题的提出
1、原系统简介
我酒店的中央空调系统的主要设备和控制方式:100冷吨冷气主机2台,型号为三洋溴化锂蒸汽机组,平时一备一用,高峰时两台并联运行;冷却水泵2台,扬程28米,配用功率45KW,冷水泵有3台,由于经过几次调整,型号较乱,一台为扬程32米,配用功率37KW, 一台为扬程32米,配用功率55KW,一台为扬程50米,配用功率45KW。冷却塔6台,风扇电机5.5KW,并联运行。
2、原系统的运行及存在问题
我酒店是一间三星级酒店。因酒店是一个比较特殊的场所,对客人的舒适度要求比较高,且酒店大部分空间自然通风效果不好,对夏季冷气质量的要求较高。
由于中央空调系统设计时必须按天气热、负荷大时设计,且留有10%-20%左右的设计余量。其中冷冻主机可以根据负载变化随之加载或减载,冷冻水泵和冷却水泵却不能随负载变化作出相应的调节。这样,冷冻水、冷却水系统几乎长期在大流量、小温差的状态下运行,造成了能量的极大浪费。
为了解决以上问题,我们打算利用变频器、PLC、数模转换模块、温度模块、温度传感器等构成的温差闭环自动调速系统。对冷冻、冷却水泵、冷却塔进行改造,以节约电能。
三、节能改造的可行性分析
改造方案是通过变频器、PLC、数模转换模块、温度模块和温度传感器等构成温差闭环自动控制,根据负载轻重自动调整水泵的运行频率,根据冷却水温度的高低,自动切投冷却塔散热风机,以达到节能效果。以下是分析过程:
1、 中央空调系统简介
中央空调系统结构图
在中央空调系统设计中,冷冻泵、冷却泵的装机容量是取系统大负荷再增加10%—20%余量作为设计系数。根据计算中央空调系统中,冷冻水、冷却水循环用电约占夏季酒店总用电的25%—30%,冷却塔的用电占8%—10%。实施对冷冻水和冷却水循环系统以及冷却塔的能量自动控制是中央空调系统节能改造及自动控制的重要组成部分。
2、泵的转速调节
根据异步电动机原理
n=60f/p(1-s)
式中:n:转速 f:频率 p:电机磁极对数 s:转差率
由上式可见,调节转速有3种方法,改变频率、改变电机磁极对数、改变转差率。在以上调速方法中,变频调速性能好,调速范围大,静态稳定性好,运行效率高。改变频率而改变转速的方法方便有效。
3、冷却塔的控制
以前的冷却塔是人为的根据冷却水温度选择冷却塔开启的台数,非常容易造成能源的浪费现象,现在根据冷却水的温度,由温度传感器传送信号至PLC,由PLC经计算后对冷却塔风机依次开启,以28℃为基数,温度每上升2℃,开启两台散热风机,每下降2℃,延时5分钟后停止2台风机,以达到节能效果。
四、节能改造的具体方案
1、主电路的控制设计
根据具体情况,考虑到成本控制,原有的电器设备尽可能的利用。冷冻水泵及冷却水泵均采用一用一备的方式运行,使用一台变频器控制拖动两台水泵交替运行。将一台扬程较高的冷水泵作为备用。
以下为冷冻水泵与冷却水泵一次接线图:
2、功能控制方式
工作流程:
开机:开启冷水及冷却水泵,由PLC控制冷水及冷却水泵的启停,由冷水及冷却水泵的接触器向制冷机发出联锁信号,开启制冷机,由变频器、温度传感器、温度模块组成的温差闭环控制电路对水泵进行调速以控制工作流量,PLC控制冷却塔根据温度传感器信号自动选择开启台数。
停机:关闭制冷机,冷水及冷却水泵以及冷却塔延时十分钟后自动关闭。
保护:由压力传感器控制冷水及冷却水的缺水保护,压力偏低时自动开启补水泵补水。
五、变频节能技术框图及改造原理分析
下图为变频节能系统示意图
1、对冷冻泵进行变频改造
控制原理说明如下:PLC控制器通过温度模块及温度传感器将冷冻机的回水温度和出水温度读入控制器内存,并计算出温差值;根据冷冻机的回水与出水的温差值来控制变频器的频率,以控制电机转速,调节出水的流量,控制热交换的速度;温差大,说明室内温度高系统负荷大,应提高冷冻泵的转速,加快冷冻水的循环速度和流量,加快热交换的速度;温差小,则说明室内温度低,系统负荷小,可降低冷冻泵的转速,减缓冷冻水的循环速度和流量,减缓热交换的速度以节约电能;
2、对冷却泵进行变频改造
由于冷冻机组运行时,其冷凝器的热交换量是由冷却水带到冷却塔散热降温,再由冷却泵送到冷凝器进行不断循环的。冷却水进水出水温差大,说明冷冻机负荷大,需冷却水带走的热量大,应提高冷却泵的转速,加大冷却水的循环量;温差小,则说明,冷冻机负荷小,需带走的热量小,可降低冷却泵的转速,减小冷却水的循环量,以节约电能。
六、实际调试注意事项
1、整改设备安装完毕后,先将编好的程序写入PLC,设定变频器参数,检查电器部分并逐级通电调试。
2、投入试运行时,人为地减少负荷,观察流量是否因频率的降低而减小,并找到制冷机报警时的低变频器频率,以及流量降低后管道末端的循环情况,使变频器工作在一个低的稳定工作点。
3、用温度计及时检测各点温度,以便检验温度传感器的jingque度及校验各工况状态。
七、技术改造后的运行效果比较
1、节能效果及投资回报
进行技术改造后,系统的实际节电率与负荷状态、天气温度变化等因素有一定关系。根据以往运行参数的统计与改造后的节能预测,平均节能应在20-30%以上。经济效益十分显著。改造后投入运行一年即可收回成本,以后每年可为酒店节约用电约12万元。
2、对系统的正面影响
由于冷冻泵、冷却泵采用了变频器软启停,消除了原来启动时大电流对电网的冲击,用电环境得到了改善;消除了启停水泵产生的水锤现象对管道、阀门、压力表等的损害;消除了原来直接启停水泵造成的机械冲击,电机及水泵的轴承、轴封等机械磨擦大大减少,机械部件的使用寿命得到延长;由于水泵大多数时间运行在额定转速以下,电机的噪声、温升及震动都大大减少,电气故障也比原来降低,电机使用寿命也相应延长。
由于采用了温差闭环变频调速,提高了冷冻机组的工作效率,提高了自动化水平。减少了人为因数的影响,大大优化了系统的运行环境、运行质量。
八、结论
一次性投资较大,但从长远的经济利益来看是值得的。这里我们也借鉴了其它一些酒店改造的经验和实际效果,验正了利用变频器、PLC、数模转换模块、温度模块、温度传感器等组成的温差闭环自动控制系统,对中央空调系统的节能改造是可行的。可以达到我们当初设计的预期效果。
九、结束语
在科技日新月异的,积极推广高新技术的应用,使其转化为生产力,是我们工程技术人员应尽的社会责任。对落后的设备生产工艺进行技术革新,不仅可以提高生产质量、生产效率,创造可观的经济效益。对节能、环保等社会效益同样有着重要的意义。
本文介绍了如何利用PLC可编程控制器的自动控制和逻辑运算的优点以及与人机界面的完美结合,使弯管半径及长度等成为可调参数,直接在人机界面上操作和改变PLC的程序及参数,达到灵活控制设备运行的目的。从而使设备操作变得更方便,更富有人性化。它充分体现了工控自动化在实际生产中的重要作用。
1、引言
弯管机是休闲用品及工艺装饰品生产行业中的重要设备之一,由于产品种类丰富,形状千变万化,相应弯管的形状、尺寸及大小半径各不相同,在以前生产中,主要有液压弯管机、手动弯管机、简易电动弯管机等,这对大批量生产以及产品尺寸的千变万化不相适宜。本文介绍的弯管机是根据实际生产需要,自主开发、研制而成,并已投入实际生产中,产生了显著的效益。
2、系统介绍
该弯管机的控制系统原理图如图1所示,主要由PLC、变频器、传感器、人机界面、主副电机等组成。该机的主体部位,由八组滚轮组成,如图2所示,一次可生产八根管子,提高了效率。主电机由变频器控制,通过HMI可调整滚轮的速度;管子弯曲半径由副电机通过涡轮副减速控制滑块下压和上升;弯管长度、半径及滚轮速度、滚压次数为调整参数,在人机界面上可以调整,非常方便,富有人性化,PLC内部程序是控制设备自动运行的关键部份。
3、控制模式
该机有手动运行模式和自动运行模式。
3.1手动运行模式
合上电源,在人机界面中选择手动运行模式,该模式为机器的调试或修理等特殊运行模式,分滚轮正转、反转、滑块上升、下降四种状态,分别相互独立操作。
3.2自动运行模式
合上电源,在人机界面中,选择自动运行模式,该模式为正常生产模式。根据需要调整好可调参数(弯管长度、半径、滚轮速度、滚压次数),按启动按钮,立即进行自动运行,变频器接收到频率参数,控制主电机从OHZ上升至该频率运行,传至滚轮,主副电机根据人机界面的调整参数和PLC内部程序运行,传至滚轮及滑块,通过编码器产生信号传至PLC,控制滚轮正反转,滑块下降、上升,以生产出合格的产品。
4、工作原理
如图2所示,滑块上升,放好管子,滑块下压到一定高度h,主电机带动滚轮转动,根据管子的长度L,由PLC计算出滚轮需转动X圈再反转X圈。根据弯曲半径R的大小,滑块分n次下压,滚轮重复n次循环动作完成产品。
生产时只需调整可调参数:管子长度L、管子弯曲半径R及重复滚压次数n等,由PLC内部程序,通过逻辑运算得出h、X等参数,根据主、副电机相对应的编码器所产生的脉冲信号自动控制设备的运行。
5、结束语
该设备的成功研制,解决了休闲用品及工艺装饰品的大批量生产和品种多样化的问题,显著地提高了生产效率。使操作变得更直观,富有人性化。
浆纱工序是织造生产流程中的关键工序,为提高浆纱质量,使浆纱机实现机、电、仪、气、夜一体化技术、盐城纺织机械厂生产的GA-333型浆纱机率先应用了华光电子工业有限公司的中规模SU-6型可变程序控制器,作为设备的中央电气控制。对设备的运行状态、工艺参数等进行在线检测和实时控制,为浆纱机本身的浆纱质量和机械性能提供了可靠的技术保证。
1、 压浆力随车速的变化作线性调节是保证上浆质量稳定的关键技术之一、压浆利于车速的关系曲线见图(一)。PLC通过传感器采集车速信号,压浆力信号与设定的车速、压浆力进行比较计算后,通过DA模块进行电流输出,输出的电流信号控制电控调压器输出的压缩空气压力使压浆力与车速的关系符合工艺曲线的要求。
(图一)压浆力与车速关系曲线
为了实现这一功能,PLC系统配置了如下模块。
(1)U-01AD模块,用来采集压浆力的信号,模块安装位置号为PC26.
(2)U-01DA模块,用来输出对压浆力的控制信号,本系统输出的控制信号为电流信号I+和I-,主控气动柜气阀调整压力,模块位置号为PC15。
(3)U-01Z高速计数模块,用以采集浆纱机的运行速度信号,模块安装位置号位PC16。
(4)由U-05T输出模块和U-05N输入模块组成参数设定矩阵电路(见图二),根据工艺要求P1、P2值可根据车速V1(低速)、V2(正常工艺车速)预先设定。当车速为0或V1,以低压浆力P1压浆;当车速升高,压浆力随着升高;当车速降低,压浆力P随着减小。这便构成了压浆力随车速变化进行线性调节的控制功能,这一功能的实现是由上述几个特殊模块在软件程序的支持下完成的,其控制精度、稳定性都很好,使上浆率这一重要工艺指标得到保证。
2、 伸长率的在线检测、数字显示及精细调节系统对工艺参数的控制作用,体现su-6优越控制功能的系统之一。
伸长率是浆纱工序重要工艺参数之一,要求纱线的伸长率在保证卷绕的基础上尽可能小,以保持纱线的大伸度,为后部工序的工作提供良好的条件。
对伸长率的在线检测和控制步骤是:
(1) 对浆纱机拖引辊、上浆辊、引纱辊的线速度进行检测。
(2) 可编程序控制器对采集到的数据进行处理计算。
(3) 将计算的结果输出到显示器进行在线显示。
(4) 将计算结果与伸长率的设定值进行比较,用输出模块控制伺服电机自动对伸长率进行精细调节或根据显示的数据进行人工远程调控。
为完成上述显示和控制功能,在PLC系统中使用了如下模块:
(1) 使用了U-01NI中断输入模块,采用华光电子工业有限公司的TRD-J200-RZ旋转编码器,KCN-6SR计数器作为传感器,以中断执行方式输入数据。使用U-01Z高速计数模块检测的数据。U-01NI模块放入PC00槽内。
(2) 采用U-15T和U-05N模块,使用矩形输入方式对伸长率工艺参数进行设定以及伸长率自控命令和人工远程调控信号输入。
(3) 采用U-20T输出模块,执行伸长率自控和人工远程调控指令。
上述伸长率自控系统的使用保证浆纱伸长率的控制精度,简化了挡车工的操作和人为因素的影响。
GA-333浆纱机使用SU-6可编程序控制器的系统配置情况:
系统配置图见图三
通过图三可看出,SU-6PLC系统中共配置了U-01AD、U-01DA、U-01Z、U-01NI四块特殊模块季其它输入输出模块15块,共计19块模块,其实际使用I/O点数为67/140点,对浆纱机如下工艺参数进行自动控制。
1、 经轴的退绕张力。 2、浆液、烘筒的温度自控。 3、压浆力随车速度变化作线性调节。 4、伸长率在线检测数字显示及精细调节。 5、浆液液面自控。 6、浆纱匹长、匹数的自动记录。 7、浆纱车速、压浆力、伸长率、回潮率、匹长、匹数的显示。 8、对全机近70个点的机械动作进行控制。
SU-6输出模块的配制
PC12(U-05T) PC21(U-05T)浆槽(前浆槽)
CA CA
0-退绕张力自控贮气阀YA 0-引线压辊上下电磁阀YA
1-退绕张力自控刹车阀YA 1-前浸没辊侧压电磁阀YA
2-压纱辊(车头侧面压纱)
2-后浸没辊侧压电磁阀YA
3-空 3-前压浆辊升降电磁阀YA
4-织轴正传电磁阀YA
4-前压浆辊高低压切换电磁阀YA
5-织轴反转电磁阀YA 6-后压浆辊高低压切换电磁阀YA
6-织轴离合器合YA 7-补浆电磁阀YA
7-织轴离合器分YA CB
CB 0-边轴离合器电磁阀YA
0-计时 1-前压浆辊自动加压电磁阀YA
1-电铃中间继电器KA9 2-前浸没辊升降电机接触器(升)KM12
2-I浆槽电磁离合器的中间继电器KA10 3-前浸没辊升降电机接触器(降)KM13
3-II浆槽电磁离合器的中间继电器KA11 4-后浸没辊升降电机接触器(升)KM14
4-警报器高 5-后浸没辊升降电机接触器(降)KM15
5-警报器低 6-I浆泵电机接触器KM16
6-空 7-I浆槽湿分线接触器KM17
7-空 PC22(U-05T)II浆槽(后浆槽)
PC20(U-05T) CA
CA 0-引纱压辊上下电磁阀YA
0-寸行电机接触器KM11 1-前浸没辊测压电磁阀YA
1-寸行电磁离合器的中间继电器KA2 2-后浸没辊测压电磁阀YA
2-织轴电磁离合器的中间继电器KA3 3-边轴离合器电磁阀YA
3-打印中间继电器KA8 4-补浆电磁阀YA
4-左拍分电机接触器(拍)KM7 5-后压浆辊升降电磁阀YA
5-左拍分电机接触器(分)KM8 6-后压浆辊高低压切换电磁阀YA
6-右拍分电机接触器(拍)KM9 7-前压浆辊高低压切换电磁阀YA
7-右拍分电机接触器(分)KM10 CB
CB 0-前压浆辊升降电磁阀YA
0-油泵电机接触器-KM2 1-前压浆辊自动加压电磁阀YA
1-伸缩箱电磁阀YA 2-前浸没辊(电机升)接触器KM18
2-导纱辊电磁阀YA 3-前浸没辊(电机降)接触器KM19
3-测长辊电磁阀YA 4-后浸没辊(电机升)接触器KM20
4-上落轴电磁阀YA 5-后浸没辊(电机降)接触器KM21
5-排风电机(I)接触器KM5 6-浆泵接触器KM22
6-排风电机(II)接触器KM6 7-湿分绞接触器KM23
7-空
SU-6可编程序控制器的使用大大简化了电器控线路,是继电器、接触器逻辑控制电路无法比拟的,并且各模块均有LED状态指示和故障显示,可对故障的分析处理带来极大的方便,压缩故障停机时间,提高工作效率。