6ES7216-2BD23-0XB8实体经营
研制机器人的初目的是为了帮助人们摆脱繁重而简单的重复劳动,替代人到有辐射等危险环境中进行作业,机器人早在汽车制造业和核工业领域得以应用。随着机器人技术的不断发展,工业领域的焊接、喷漆、搬运、装配等场合,已经开始大量使用机器人。工业机器人大都用于简单、重复、繁重的工作,如上、下料,搬运等,能够按照预定的顺序、条件、位置逐步重复执行给定的作业任务,从而节省了劳动力,提高了工作效率。
可编程控制器(PLC)是一种数字运算操作的电子系统,专为在工业环境下应用而设计。由于PLC具有功能强大、可靠性高、体积小巧、可扩展各种智能模块等特点,使其在自动化领域中的应用日益普及。本文采用FX系列PLC控制图书馆作业型机器人,使其按编制的程序自动完成图书上架工作。
1 系统原理及结构
1.1 系统原理
图书馆作业型机器人工作系统结构示意图如图1所示。机器人机身长度l1与书架宽度l2相等。机身部装有图书存储栏和与之相平行的钢轨,机械手安装在钢轨上并可沿X方向在钢轨上移动。机械手顶端安装一扫描装置,用于读取图书信息,以配合机械手执行图书分类上架任务。机器人机身部装有接近传感器,主要用于感应机器人和外部物体的接近程度,使机器人可通过紧急制动来避免与书架、墙壁以及意外障碍物的碰撞。
此主题相关图片如下:
图1 机器人结构示意图
当PLC接收到开始信号时,机器人行驶至位置A后停止,机械手绕Z轴沿顺时针方向旋转180°至垂直正对图书存储栏,开始从图书存储栏中寻找A1类图书。这时,机械手在钢轨上沿X轴正方向朝钢轨末端移动,顶端扫描装置扫描图书存储栏中待上架图书的条形码,直至扫描到A1类图书停止,机械手伸出手臂将之取出,手爪夹紧书后手臂缩回,接着机械手绕Z轴沿逆时针方向旋转180°至垂直正对书架A1栏,沿X轴反方向朝钢轨前端移动,顶端扫描装置扫描书架A1栏中放置的图书的条形码,直至运动至五条形码信息处(即书架A1栏中未放置图书的空隙处)停止。机械手伸出手臂将图书放人A1栏中,将手臂缩回,完成一本图书的上架任务。由于图书存储栏中可能还存在A1类图书,这就需要继续寻找A1类图书。这时,机械手又运动至钢轨前端限位处(即初始位置),并绕Z轴顺时针方向旋转180°至垂直正对图书存储栏,又开始重复循环进行上述动作(扫描目标图书刁取书呻上架),直至机械手移动至钢轨末端,扫描完图书存储栏中后一本图书,才说明已寻找完图书存储栏中所有A1类图书。若后一本书是A1类图书,机械手则继续按上述步骤完成上架任务,移动至钢轨前端,准备开始A2类图书的上架工作;若不是A1类图书,机械手则立即移动至钢轨前端,准备开始A2类图书的上架工作。机器人将A2、A3类图书上架的工作原理与上述原理基本相似,只是机械手将图书上架时需伸高一定高度至A2、A3栏。就这样,机器人在PLC控制下顺序完成了书架A中图书的上架工作。接着,机器人又行驶至位置B后停止,的上架工作。
1.2 系统结构
1.2.1 机械手
本作业型机器人中机械手具有四个自由度,即水平方向的伸、缩;竖直方向的升、降;绕竖直轴Z轴的顺时针方向旋转及逆时针方向旋转;沿X方向在钢轨上的移动。其末端安装了执行装置——手爪,可完成抓、放动作。
以上动作均采用气动方式驱动。即用4个二位五通电磁阀门(每个阀门有两个线圈,对应两个动作)分别控制4个气缸,使机器人完成伸、缩、上、下、旋转以及手爪抓放动作。其中旋转运动用一组齿轮齿条,使气缸的直线运动转化为旋转运动;手爪则用一连杆机构使气缸的伸缩运动转化为手爪的抓放运动。
机械手在钢轨上的移动机构采用4个轮子,如图2所示,由伺服电机通过同步轮、同步带传至主动轮子。
此主题相关图片如下:
图2 机械手移动机构示意图
1.2.2 图书存储栏
机器人在开始作业前,工作人员将待上架的图书放人图书存储栏中。图书存储栏固定于机器人机身部,随着机器人移动。为了便于机械手从栏中将所需图书取出,须将每本图书间隔开并竖立放置。于是,我们设计了如图3所示的图书存储栏。分别用两块挡板隔成了一个个书槽,将待上架的图书每本分别放置于书槽中,这样使每本图书不会倒下,彼此间隔了一定距离,使机械手在扫描到目标图书后,能方便、准确地将之取出。
此主题相关图片如下:
图3 图书存储栏
1.2.3 机器人导引装置
本设计中采用了电磁引导方式,原理如图4所示,导引图书馆作业型机器人沿书架旁边直线运动。该方法在地板上开出数厘米深的沟,埋人导线,通以频率为3~10kHz的电流。安装在机器人机身内的敏感线圈,能感知机体与导线间的偏移,从而引导机器人沿导线正确行走。
此主题相关图片如下:
图4 引导装置原理图
2 PLC硬件接线和软件编程
本设计中机器人控制需大量的输入点和输出点。我们选用日本三菱公司生产的P1-60MR型可编程序控制器,具有36个输入点,24个输出点,足以满足本设计的要求。
为了更详细地介绍PLC控制图书馆作业型机器人工作原理,我们在此列出了机器人将A1、A2类图书自动上架的程序段,并特别针对机器人将A1类图书上架的程序段进行了详细的说明。图5是PLC的梯形图。
此主题相关图片如下:
图5 PLC的梯形图
PLC控制机器人将A1、A2类图书上架的程序框图如图6所示。在此,还写出了相应的梯形图程序。
程序说明如下:
(1)当机器人的机械手位于钢轨前端限位处,并垂直正对书架时,为机器人初始位置。此时,钢轨前端限位开关SQ2,机械手绕Z轴逆时针方向旋转180°限位开关SQ5被压,x402、x405触点接通按下起动按钮SB1时,X400触点接通,Y430线圈接通,机器人前进。
(2)当机器人前进至位置A时,压下限位开关SQ1,x401触点断开Y430线圈,机器人停止前进,正好停在书架A的前面(机器人机身长度与书架宽度相等)。
(3)机械手绕Z轴J顷时针方向旋转至触到限位开关SQ4,此时x404触点断开Y433线圈,机械手停止旋转。此时,机械手已旋转180°至垂直正对图书存储栏。
(4)x404触
点接通线圈Y431,机械手开始在钢轨上沿X轴正方向朝后端移动,寻找A1类图书。
此主题相关图片如下:
图6 程序框图
(5)扫描到A1类图书信息,x412触点断开Y431线圈,机械手停止移动,x412触点接通移位寄存器数据输入端,使M100置“1”,Y435线圈接通,机械手手臂伸出。
(6)手臂伸至限位开关SQ6时,X406与M100触点接通移位寄存器移位信号输入端,产生移位信号,M100的“1”态移至M101,M101接通线圈M200,M200触点接通Y531线圈,手爪夹紧书。定时器T450开始计时。M100置“0”,Y435断开,手臂停止伸出。
(7)T450延时到,T450与M101触点接通,产生移位信号,M102为“1”,M100~M101置“0”,M102触点接通Y436线圈,机械手手臂缩回,因为使用S指令,M200线圈保持接通,Y531也保持接通,使手爪继续把书加紧。
(8)当手臂缩至限位开关SQ7时,x407与M102触点接通产生移位信号,M103为“l”,M100~M102置“0”。M102断开Y436线圈,停止缩回,M103接通Y434线圈,机械手开始绕Z轴逆时针方向旋转。
(9)机械手旋转至限位开关SQ5时,X405与M103触点接通移位信号,M104为“1”,M100-M103置“0”。M103触点断开Y434线圈,停止旋转。此时机械手已逆时针方向旋转180*,正好垂直正对书架。M104接通线圈Y432,机械手开始在钢轨上沿X轴反方向朝前端移动。
(10)移动时,机械手顶端的扫描装置开始扫描
图书条形码信息。当没有条形码信息时,X500与
M104触点接通移位信号,M105为“1”,M100~M104置“0”。M104触点断开Y435线圈,机械手停止移动。M105触点接通Y435线圈,机械手手臂伸出。
(11)手臂伸至限位开关SQ6时,X406与M105触点接通移位信号,M106为“1”,M100~M105置“0”,M105触点断开Y435线圈,手臂停止伸出。M106触点接通M200线圈,R指令使M200复位,M200触点断开Y531线圈,手爪松开,放置图书于书栏A1中。T451开始计时。
(12)T451延时到后,T451与M106触点接通移位信号,M107为“1”,M100~M106置“0”,Y436线圈接通,机械手手臂缩回。
(13)手臂缩至限位开关SQ7时,X407与M107触点接通移位信号,M110为“广,M100-M107置“0”,M107断开Y436线圈,手臂停止缩回。M110接通Y432线圈,机械手开始在钢轨上沿轴反方向移动。
(14)机械手移动至限位开关SQ2时,X402与M110触点接通移位信号,M111为“1”,M100~M110置“0”,M110触点断开Y432线圈,机械手停止移动。M111触点接通移位寄存器复位输入端,寄存器全部复位。此时,机器人处于初始位置状态,M111触点接通Y433线圈,机械手又开始绕Z轴顺时针方向旋转,继续寻找A1类图书,反复执行以上步骤。
以上(1)~(14)步骤的程序说明是针对A至B
程序段展开的。若机械手在钢轨上移动至末端限位开关处,说明已扫描完图书存储栏中所有待上架的图书,即已将A1类图书寻找完毕。这时,程序直接跳转至B点后,机器人开始执行A2类图书查找并自动上架任务。
当按下停止按钮SB2时,X501触点作用,使机器人立即停止动作。
3 结束语
本系统采用FX系列PLC控制图书馆作业型机器人,使其按编制的程序自动完成图书上架工作,经实际试运行,表明各项功能均已满足设计要求,且控制系统的可靠性高、故障少,结构部分操作方便,安全可靠,从而节省了劳动力,提高了工作效率。
一、引言:
在当今制造业,随着产品种类的增多及对产品质量要求的不断提高,对焊接工艺要求起来越高,许多原来有人工焊接的产品对焊接自动化设备的需求及要求也越来越多。而如何提高焊接设备对产品的适应性便成了众多焊接设备厂商所面临的首要问题。现就对国产海为(Haiwell)PLC在这一方面的系统应用作一介绍。
二、解决方案:
如上图所示,系统主要有带文本显示器、可编程控制器、变频器等组成。
工作原理:利用HaiwellPLC的易用的通信功能:标准配置2个通信口,1个RS232通信口,1个RS485通信口。用HaiwellPLC的RS485口与变频器通信,控制变频器运行、停止、速度并读取变频器运行状态及输出频率。再通过HaiwellPLC的RS232口与文本显示器通信,对焊接工艺参数进行设定。
系统优点:
1、利用HaiwellPLC的自由通信协议指令COMM实现与富士变频器的运行控制与状态读取。所有HaiwellPLC的通信功能均可用一条指令实现,无需对特殊位、特殊寄存器编程,也无需管理多条通信指令的通信时序,同一个条件下可写多条通信指令。
2、HaiwellPLC标准配置1个RS232口和1个RS485口,且任何一个通信口均可作为主站也可作为从站。任何一个通信口均可作为编程端口,也可作为与第3方设备通信的端口。在本应用中,用RS232口与文本显示器通信,用RS485口与富士变频器通信。
3、利用通信实现变频器的速度调节及运行控制,大大增强系统的抗干扰能力,大大提高系统在强干扰的焊接场合的可靠性与稳定性。
4、利用通信实现变频器的通信,节省了PLCDA模块,大大节约系统成本,并轻易实现应对不同产品需要不同工艺控制参数(焊接速度、焊接时间)的要求。
主要硬件配置:
1、可编程控制器:HW-S32ZS220R 1台
2、变频器:FVR0.4E11S-7JE(Fuji) 1台
3、文本显示器OP320A-S(Xinjie) 1台
三、程序设计亮点:
1、利用COMM指令非常容易的实现与富士变频器通信。用COMM指令写通信协议时,可选择按寄存器低字节(低8位)发送的方式,而接收数据仍按16位接收并自动存放至指令指定的地址,使用户编程大大简化。;
2、利用通信功能控制变频器,大大提高速度控制的jingque性,并简化了许多原来D/A转换时的数字量——工程量——显示值间转换程序。
四、
利用海为可编程控制器(HaiwellPLC)便利的通信功能及便利的指令集,满足了焊接自动化设备厂商对设备广泛适应性要求。可广泛应用于焊接自动化行业设备配套场合。