6ES7222-1HF22-0XA8诚信交易
文章主要介绍了PLC控制系统在工业应用中可能受到的干扰类型,提出了针对性的抗干扰措施,并强调了在系统设计和安装时,必须对环境作全面的分析,确定干扰的性质,采取相应的抗干扰措施。1前 言
工业的高速发展对控制系统的依赖性越来越强。分散型控制系统(DCS)、可编程控制器(PLC)、现场总线控制系统(FCS)、工业控制机(IPC)以及各种测量控制仪表已是构成工业自动化的主要硬件设施。随着微电子技术的发展和控制系统集成化程度的提高,大规模集成芯片内单位面积的元件数越来越多,所传递的信号电流也越来越小,系统的供电电压也越来越低,现已降到5V、3V乃至1.8V。芯片对外界的噪声也越趋敏感,显示出来的抗干扰能力也就很低。再则,相对于其它的电子信息系统,控制系统不但系统复杂,设备多,输入/输出(I/O)端口多,特别是外部的连接电缆又多又长,这类似于拾取噪声的高效天线,给噪声的耦合提供了充分的条件,使得各种噪声容易侵入控制系统。
PLC具有编程简单、通用性好、功能强、易于扩展等优点,特别是采用了高集成度的微电子器件,具有很高的可靠性,能较强的适应恶劣的工业环境,已被广泛应用于工业控制领域中。现在工业生产线控制系统中所使用的PLC,主要是集中安装在主控室,它们大多处在强电电路和强电设备所形成的恶劣电磁环境中,很容易被周围干扰源干扰而引起控制系统产生误动作,影响系统的正常工作,必须重视系统的抗干扰设计。为防止干扰,可以采用硬件和软件相结合的抗干扰方法。
2 PLC系统的基本组成结构
可编程控制器硬件系统由PLC、功能I/O单元和外部设备组成,如图1所示。其中PLC由CPU、存储器、基本I/O模块、I/O扩展接口、外设接口和电源等部分组成,各部分之间由内部系统总线连接。
图1 PLC系统的基本组成结构
3 影响PLC控制系统稳定的干扰类型
3.1 空间辐射干扰
空间的辐射电磁场(EMI)主要由电力网络、电气设备、雷电、高频感应加热设备、大型整流设备等产生,通常称为辐射干扰。电气设备、电子设备的高密度使用,使空间电磁波污染越来越严重,这些干扰源产生的辐射波频率范围广,且无规律。空间辐射干扰以电磁感应的方式通过检测系统的壳体、导线等形成接收电路,造成对系统的干扰。若此时PLC置于其辐射场内,其信号、数据线和电源线即可充当天线接受辐射干扰。此种干扰与现场设备布置及设备所产生的电磁场的大小,特别是与频率有关,一般通过设置屏蔽电缆和PLC局部屏蔽及高压泄放元件进行保护。
3.2 电源的干扰
PLC系统一般由工业用电网络供电。工业系统中的某些大设备的启动、停机等,可能引起电源过压、欠压、浪涌、下陷及产生尖峰干扰,这些电压噪声均会通过电源内阻耦合到PLC系统的电路,给系统造成极大的危害。
3.3 来自信号传输线上的干扰
除了传输有效的信息外,PLC系统连接的各类信号传输线总会有外部干扰信号的侵入。由信号线引入的干扰会引起I/O信号工作异常和测量精度大大降低,严重时将引起元器件损伤。若系统隔离性能较差,还将导致信号间互相干扰,引起共地系统总线回流,造成逻辑数据变化、误动作甚至死机。
3.4 数字电路引起的干扰
数字集成电路引出的直流电流只有mA级,当电路处在高速开关时,就会形成较大的干扰。例如,TTL门电路在导通状态下从直流电源引出5mA左右的电流,截至状态下则为lmA,在5ns的时间内其电流变化为4mA,如果在配电线上具有0.5μH的电感,当这个门电路改变状态时,配电线上产生的噪声电压为:
U=L×di/dt=0.5×10-6×4×10-3 /5×10-9=0.4V
如果把这个数值乘上典型系统的大量门的数值,这种门电路的供电电压仅为5V,但所引起的干扰噪声将是非常严重的。
在处理脉冲数字电路时,对脉冲中包含的频谱应有一个粗略概念,如果脉冲上升时间t已知,可用近似公式求出其等效高频率:fmax=1/2πt1.4PLC系统内部产生的干扰。
4 PLC系统中的抗干扰设计
4.1接地抗干扰设计
接地在消除干扰上起很大的作用,良好的接地是保证PLC可靠工作的重要条件之一,可以避免偶然发生的电压冲击危害。为了抑制附加在电源及输入、输出端的干扰,应给PLC接以专用地线,接地线与动力设备(如电动机)的接地点应分开,若达不到此要求,则可与其它设备公共接地,严禁与其它设备串联接地。接地电阻要小于5Ω,接地线要粗,面积要大于2平方毫米,接地点好靠近PLC装置,其间的距离要小于50米,接地线应避开强电回路,若无法避开时,应垂直相交,缩短平行走线的长度。
4.2 电源部分的抗干扰设计
电源波动造成的电压畸变或毛刺,将对PLC及I/O模块产生不良影响。据统计分析,PLC系统的干扰中有70%是从电源耦合进来的。为了抑制干扰,PLC供电系统可采用如下方式,控制器和I/O系统分别由各自的隔离变压器供电,并与主电路电源分开。当某一部分电源出了故障时,而不会影响其他部分,如输入、输出供电中断时,控制器仍能继续供电,提高了系统的可靠性。
4.3 输入输出信号的抗干扰设计
为了防止输入、输出信号受到干扰,应选用绝缘型I/O模块。
4.3.1 输入信号的抗干扰设计
输入信号的输入线之间的差模干扰可以利用输入模块滤波来减小干扰,而输入线与大地间的共模干扰可通过控制器的接地来抑制。在输入端有感性负载时,为了防止电路信号突变而产生感应电势的影响,可采用硬件的可靠性容错和容差设计技术,对于交流输入信号,可在负载两端并联电容C和电阻R,对于直流输入信号,可并接续流二极管D。一般负载容量在10VA以下时,应选C为0.1μF,R为120,当负载容量在10VA以上时,应选C为0.47μF,R为47 。具体电路如图2所示:
图2 输入信号的抗干扰设计
4.3.2 输出电路的抗干扰设计
对于PLC系统为开关量输出,可有继电器输出、晶闸管输出、晶体管输出三种形式。具体选择要根据负载要求来决定。若负载超过了PLC的输出能力,应外接继电器或接触器,才可正常工作。
PLC输出端子若接有感性负载,输出信号由OFF变为ON或从ON变为OFF时都会有某些电量的突变而可能产生干扰。在设计时应采取相应的保护措施,以保护PLC的输出触点,如图3所示。对于直流负载,通常是在线圈两端并联续流二极管D,二极管应尽可能靠近负载,二极管可为1A的管子。对于交流负载,应在线圈两端并联RC吸收电路,根据负载容量,电容可取0.1μF~0.47μF,电阻可取47Ω~120Ω,且RC尽可能靠近负载。
4.4 外部配线的抗干扰设计
外部配线之间存在着互感和分布电容,进行信号传送时会产生窜扰。为了防止或减少外部配线的干扰,交流输入、输出信号与直流输入、输出信号应分别使用各自的电缆。集成电路或晶体管设备的输入、输出信号线,要使用屏蔽电缆,屏蔽电缆在输入、输出侧要悬空,而在控制器侧要接地。配线时在30米以下的短距离,直流和交流输入、输出信号线好不要使用同一电缆,如果要走同一配线管时,输入信号要使用屏蔽电缆。30米~300米距离的配线时,直流和交流输入、输出信号线要分别使用各自的电缆,并且输入信号线一定要用屏蔽线。对于300米以上长距离配线时,则可用中间继电器转换信号,或使用远程I/O通道。对于控制器的接地线要与电源线或动力线分开,输入、输出信号线要与高电压、大电流的动力线分开配线。
4.5 软件抗干扰设计
硬件抗干扰可滤除大部分干扰信号,但因干扰信号产生的原因很复杂。且具有很大的随机性,很难保证系统完全不受干扰。往往在硬件抗干扰措施的基础上.采取软件抗干扰技术加以补充,作为硬件措施的辅助手段。软件抗干扰方法没计简单、修改灵活、耗费资源少,在PLC测控系统中同样获得了广泛的应用。对于PLC测控装置,其数据输入、输出、存储等系统属于弱电系统,如果工作环境中存在干扰,就有可能使数据受干扰而破坏,从而造成数据误差、控制状态失灵、程序状态和某些器件的工作状态被改变,严重时会使系统程序破坏。一般采用指令重复执行和数字滤波两种方法。
图3 PLC输出触点的保护
4.5.1 指令重复执行
指令重复执行就是根据需要使作用相同的指令重复执行多次,一般适用于开关量或数字量输入,输出的抗干扰。在采集某些开关量或数字量时,可重复采集多次,直到连续两次或两次以上的采集结果完全相才视为有效。若多次采集后,信号总是变化不定,可停止采集,发出报警信号。在满足实时性要求的前提,如果在各次采集数守信号之间插入一段延时,数据的可靠性会更高。如果在系统实时性要求不是很高的情况下,其指令重复周期尽可能长些。
4.5.2 数字滤波
在某些信号的采集过程中,由于存在随机干扰而可能使被测信号的随机误差加大。针对这种情况,可以采用数字滤波技术。该方法具有可靠性高和稳定性好的特点,广泛应用于工业计算机测控系统中。数字滤波的常用方法还有:程序判断滤波法、中值滤波法、算术平均滤波法、递推平均滤波法等。
绍了基于PLC控制的伺服电机系统在密封垫圈绕制中的应用,阐述了密封垫圈绕制系统中PLC控制的设计,讨论了系统硬件和软件设计,包括电气线路设计、软件编程设计、文本通讯、PLC控制伺服电机定位和电焊机工作的设计。
前言
PLC是在传统的顺序控制器的基础上引入了微电子技术、计算机技术、自动控制技术和通讯技术而形成的一代新型工业控制装置,目的是用来取代继电器、执行逻辑、记时、计数等顺序控制功能,建立柔性的程控系统。PLC具有通用性强、维护方便、可靠性高、抗干扰能力强、编程简单等特点,已在工业自动化领域得到了广泛的应用。特别是在电机控制上,PLC集成了专用的控制指令集,这可大大缩短编程者对程序的开发时间,提高调试的效率。
位置伺服系统,一般是以足够的位置控制精度(定位精度)、位置跟踪精度(位置跟踪误差)和足够快的跟踪速度作为它的主要控制目标。系统运行时要求能以一定的精度随时跟踪指令的变化,系统中伺服电动机的运行速度常常是不断变化的。故伺服系统在跟踪性能方面的要求一般要比普通调速系统高且严格得多,并且不会出现象步进电机在高速状态下旋转运动时出现“脱步”等现象,其在位置控制方面具有相当高的精度在高速旋转运动时具有与低速运动状态下相同的转矩,即可以实现恒转矩运行。伺服电机的以上一些特性可以很好地满足本系统的设计需要。
密封垫圈在石油管道、液气压系统等诸多领域内有着广泛的用途,是一种密封性极其优良的产品。主要原材料包括钢带和石墨等,因为其良好的密封性,在全球的需求量非常庞大,企业为提高其生产效率,要求采用自动生产设备。
该生产系统现大都采用的是手工操作的方式,在生产过程中,时刻需要人工干预产品的生产过程,通过测量来确定产品是否符合工艺要求。比如,时刻需要用游标卡尺来测量产品的外径来保证产品的质量;整个焊接过程完全由人工操作,自动化程度低,产品的生产效率低下,已无法满足日益增强的竞争需要,提高效率迫在眉睫。
1、系统组成
根据生产工艺的要求和对实际系统的测量,预估电机带动模芯运行所需的力矩和运行速度,综合不同规格下的各种要求,选取了PLC作为控制系统,驱动伺服电机和焊机,采用文本显示器设置相应参数。总原理框图如图1所示。
图1 PLC控制电路框图
1.1 硬件部分
本系统电气硬件控制电路的设计,主要包括保护电路、电源变换电路、伺服电机驱动部分电路、伺服电机供电电路和控制电路。对于伺服电机的控制采用PLC作为主控制器,主要控制线有4根:伺服使能信号线、指令脉冲输出信号线、伺服电机旋转方向控制线和伺服电机故障信号输出线。前3根信号线的引出主要是对伺服电机的位置运动进行控制,通过相应设置和程序设计来达到要求的精度。故障输出信号线主要是对电机的不正常运行进行保护,比如电机的过流、过压运行等。通过适当的程序来对故障信号进行处理,保证伺服系统运行的安全性和可靠性。还安装了急停按钮对特别紧急事件进行处理,以保证系统的安全性。
电气主电路主要由空气开关、熔断器(保险丝)、电源指示灯、接触器、电源开关按钮、急停开关按钮等组成。功能是保证220V电源供电的安全性与可靠性,熔断器等可以对后续电路过流等情况起到一定的保护作用。220V交流电源电压经过转换变成24V直流电源电压驱动电磁阀工作,控制气缸的动作与释放。PLC开关量输人中有2个光电开关量的输入,主要为钢带和石墨缺料时的信号输入,通过PLC程序来控制伺服电机和各机械部件在上述状态时的运动。
1.2 软件部分
软件设计主要对输入的开关量等信息进行分析、处理、综合后输出控制信号来对伺服电机和执行部件(主要为焊机)进行可靠的运动控制。满足系统控制精度的要求。主程序流程图如图2所示。
图2 主程序流程图
在实际生产过程中,由于石墨带的刚度不够,在绕制过程中容易发生断裂等问题。在实际程序设计中要求伺服电机在启动和制动过程均要有加减速时间以防止电机产生速度突变,造成石墨带的断裂和危及操作人员的安全。根据系统要求,将系统运行状态中的某些参数通过通信模块显示于文本屏上,达到实时监控的目的。其中参数主要为产品工艺的要求参数,比如焊点数、材料绕制的圈数等参数的实时显示。文本显示器除了显示功能外,还集成了参数设置的功能,主要是对生产的产品规格型号的选择和绕制圈数的设定。通过规格型号的选择来确定焊机动作与释放时间的分配和伺服电机转速的设定,使两者达到合理的配合,大限度地提高产品的生产效率。通过对产品绕制圈数的设定可以实时控制产品的合格率并可以随时按生产要求来选择生产产品的规格。打破了手工操作下,能生产的产品比较单一的缺点(规格少),提高了设备的利用效率。
2、系统问题及解决方案
2.1 伺服电机定位问题
本次系统设计中主要存在的问题是模芯的jingque定位。当一个产品制作完成后,怎样才能使模芯在高速回归原点时与压轮压下的位置的偏差不超过1mm。考虑到伺服电机的高精度定位功能,设计中采用了记录全程脉冲数的方法。这种方法充分利用了伺服电机的高精度定位功能,实现高效率的jingque定位。在整个系统设计中,将PLC的Y0口作为伺服电机脉冲的输出端,利用PLC指令集中的特殊功能存储器D8140,D8141来记录PLC发给伺服电机的脉冲数并将其累加。通过运算求出不到一圈的脉冲数,再用一圈的脉冲数减掉上面的运算结果。将此结果的脉冲数再通过PLC的Y0口发给伺服电机来控制其回归原点。如果仅用以上方法回归了原点但其仍无法满足1mm的精度要求,需要对伺服驱动器参数设置中的21号参数(零偏差幅度)进行相应计算设定。因为伺服驱动器出产时21号参数一般是400脉冲,当要求定位的精度很高时,这个默认的参数是不适合的。可以通过式(1)进行计算来确定需要的参数值。
(1)
其中:132072为电机旋转一周所需的脉冲数,为固定值,单位为脉冲/周;S为每转一周的移动量,单位为m;J为系统所要求的精度,单位为m 为零偏差幅度,单位为脉冲。
对于本系统,模芯采用小尺寸,S=0.5809m,J=0.001m,可求得P=226脉冲;(实际电机旋转一周需要的脉冲可以通过调节驱动器的电子齿轮比参数得到)考虑到系统的转速比接近1:10,P可以取20脉冲。综合考虑各种规格之后可以取小值P=1脉冲。
在软件设计中还应要使用特殊辅助继电器M8145,其功能是停止Y0口的脉冲发送(立即停止)。采用程序驱动M8145可以防止伺服电机在发送脉冲时的过脉冲现象,提高定位的精度。
2.2 焊机的时间控制问题
对焊机的开始放电时间的jingque控制直接关系到产品的质量。对于密封垫圈其要求在轮启动焊接的时候能够达到在电机带动模芯旋转一圈的过程中,按顺序先5—l0mm焊接3个点,再以40—50mm的距离焊接剩下的点。在这个过程中要保持电机有一定的转速,大概20r/min,还要保持焊点的均匀、美观和一定的强度。在设计中将电焊机的时间控制模式改为“1”(外部时间控制),又鉴于PLC的扫描方式不同于一般的单片机芯片,要考虑程序的扫描周期。在以上转速下利用公式(2)算得可以启动电焊机工作的时间:
S=V×T (2)
式中:S为焊接距离;V为电机运动速度;T为电焊机可以工作的时间范围。
算得时间T,加上扫描时间就是焊机要动作的时间范围,对其进行启动和释放时间合理分配。该系统中电焊机启动时需要l0ms的高电平维持时间(实际设定),才能进入稳定的放电状态,焊机的响应时间存在不稳定性,设定电焊机启动时高电平维持时间为20ms,电焊机可以很好地进行工作,达到控制的需要,保证焊点的质量。
3、结论
经过现场安装与调试,本系统其性能比传统的手工操作系统优良。体积小,结构也简单,为日后的维护和功能扩展奠定了良好的基础,精度能够达到要求,大大提高了效率,操作也更加简单方便。对操作人员来说,也更加安全可靠。