西门子模块6ES7231-7PF22-0XA0诚信交易
1引言
数控机床是典型的机电一体化系统。PLC工程现场界面涉及光、机、电、气、液等复杂的输入输出信令,加之PLC对于信号的逻辑处理具有的抽象运算特征,使得工业现场故障处理工作通常是相当的复杂困难,PLC机电系统现场故障往往使得缺少工程经验的设备管理者们束手无策,较长时间的故障处理处理可以大幅度降低产能,严重影响生产。本文以就事论事的方式平铺直叙具体的机电工程现场故障处理案例,保留住故障处理经验中珍贵的分析判断过程。
2 数控机床故障诊断案例
2.1甄别PLC内外部故障实例
配备820数控系统的某加工中心,产生7035号报警,查阅报警信息为工作台分度盘不回落。在SINUMERIK810/820S数控系统中,7字头报警为PLC操作信息或机床厂设定的报警,指示CNC系统外的机床侧状态不正常。处理方法是,针对故障的信息,调出PLC输入/输出状态与拷贝清单对照。
工作台分度盘的回落是由工作台下面的接近开关SQ25、SQ28来检测的,其中SQ28检测工作台分度盘旋转到位,对应PLC输入接口110.6,SQ25检测工作台分度盘回落到位,对应PLC输入接口110.0。工作台分度盘的回落是由输出接口Q4.7通过继电器KA32驱动电磁阀YV06动作来完成。
从PLCSTATUS中观察,110.6为“1”,表明工作台分度盘旋转到位,I10.0为“0”,表明工作台分度盘未回落,再观察Q4.7为“0”,KA32继电器不得电,YV06电磁阀不动作,工作台分度盘不回落产生报警。
处理方法:手动YV06电磁阀,观察工作台分度盘是否回落,以区别故障在输出回路还是在PLC内部。
2.2诊断接近开关故障实例
某立式加工中心自动换刀故障。
故障现象:换刀臂平移到位时,无拔刀动作。
ATC动作的起始状态是:(1)主轴保持要交换的旧刀具。(2)换刀臂在B位置。(3)换刀臂在上部位置。(4)刀库已将要交换的新刀具定位。
自动换刀的顺序为:换刀臂左移(B→A)→换刀臂下降(从刀库拔刀)→换刀臂右移(A→B)→换刀臂上升→换刀臂右移(B→C,抓住主轴中刀具)→主轴液压缸下降(松刀)→换刀臂下降(从主轴拔刀)→换刀臂旋转180°(两刀具交换位置)→换刀臂上升(装刀)→主轴液压缸上升(抓刀)→换刀臂左移(C→B)→刀库转动(找出旧刀具位置)→换刀臂左移(B→A,返回旧刀具给刀库)→换刀臂右移(A→B)→刀库转动(找下把刀具)。换刀臂平移至C位置时,无拔刀动作,分析原因,有几种可能:
(1)SQ2无信号,使松刀电磁阀YV2未激磁,主轴仍处抓刀状态,换刀臂不能下移。
(2)松刀接近开关SQ4无信号,则换刀臂升降电磁阀YV1状态不变,换刀臂不下降。
(3)电磁阀有故障,给予信号也不能动作。
逐步检查,发现SQ4未发信号,对SQ4检查,发现感应间隙过大,导致接近开关无信号输出,产生动作障碍。
2.3诊断压力开关故障实例
配备FANUC0T系统的某数控车床。
故障现象:当脚踏尾座开关使套筒顶紧工件时,系统产生报紧。
在系统诊断状态下,调出PLC输入信号,发现脚踏向前开关输入X04.2为“1”,尾座套筒转换开关输入X17.3为“l”,润滑油供给正常使液位开关输入X17.6为“1̶1;。调出PLC输出信号,当脚踏向前开关时,输出Y49.0为“1”,电磁阀YV4.1也得电,这说明系统PLC输入/输出状态均正常,分析尾座套筒液压系统。
当电磁阀YV4.1通电后,液压油经溢流阀、流量控制阀和单向阀进入尾座套筒液压缸,使其向前顶紧工件。松开脚踏开关后,电磁换向阀处于中间位置,油路停止供油,由于单向阀的作用,尾座套筒向前时的油压得到保持,该油压使压力继电器常开触点接通,在系统PLC输入信号中X00.2为“l”。但检查系统PLC输入信号X00.2则为“0”,说明压力继电器有问题,其触点开关损坏。
故障原因:因压力继电器SP4.1触点开关损坏,油压信号无法接通,从而造成PLC输入信号为“0”,故系统认为尾座套筒未顶紧而产生报警。
解决方法:更换新的压力继电器,调整触点压力,使其在向前脚踏开关动作后接通并保持到压力取消,故障排除。
2.4诊断中间继电器故障实例
某数控机床出现防护门关不上,自动加工不能进行的故障,无故障显示。该防护门是由气缸来完成开关的,关闭防护门是由PLC输出Q2.0控制电磁阀YV2.0来实现。检查Q2.0的状态,其状态为“1”,但电磁阀YV2.0却没有得电,由于PLC输出Q2.0是通过中间继电器KA2.0来控制电磁阀YV2.0的,检查发现,中间继电器损坏引起故障,更换继电器,故障被排除。
一种简单实用的方法,就是将数控机床的输入/输出状态列表,通过比较通常状态和故障状态,就能迅速诊断出故障的部位。
2.5根据梯形图逻辑诊断DI点故障实例
配备SINUMERIK810数控系统的加工中心,出现分度工作台不分度的故障且无故障报警。根据工作原理,分度时将分度的齿条与齿轮啮合,这个动作是靠液压装置来完成的,由PLC输出Q1.4控制电磁阀YVl4来执行,PLC梯形图如下图所示。
通过数控系统的DIAGNOSIS能中的“STATUSPLC”软键,实时查看Q1.4的状态,发现其状态为“0”,由PLC梯形图查看F123.0也为“0”,按梯形图逐个检查,发现F105.2为“0”导致F123.0也为“0”,根据梯形图,查看STATUSPLC中的输入信号,发现I10.2为“0”,从而导致F105.2为“0”。I9.3、I9.4、I10.2和I10.3为四个接近开关的检测信号,以检测齿条和齿轮是否啮合。分度时,这四个接近开关都应有信号,即I9.3、I9.4、I10.2和I10.3应闭合,现I10.2未闭合,处理方法:(1)检查机械传动部分。(2)检查接近开关是否损坏。
2.6根据梯形图逻辑诊断DO点故障实例
配备SINUMERIK810数控系统的双工位、双主轴数控机床。
故障现象:机床在AUTOMATIC方式下运行,工件在一工位加工完,一工位主轴还没有退到位且旋转工作台正要旋转时,二工位主轴停转,自动循环中断,并出现报警且报警内容表示二工位主轴速度不正常。
两个主轴分别由B1、B2两个传感器来检测转速,通过对主轴传动系统的检查,没发现问题。用机外编程器观察梯形图的状态。
F112.0为二工位主轴起动标志位,F111.7为二工位主轴起动条件,Q32.0为二工位主轴起动输出,I21.1为二工位主轴刀具卡紧检测输入,F115.1为二工位刀具卡紧标志位。
在编程器上观察梯形图的状态,出现故障时,F112.0和Q32.0状态都为“0”,主轴停转,而F112.0为“0”是由于Bl、B2检测主轴速度不正常所致。动态观察Q32.0的变化,发现故障没有出现时,F112.0和F111.7都闭合,而当出现故障时,F111.7瞬间断开,之后又马上闭合,Q32.0随F111.7瞬间断开其状态变为“0”,在Flll.7闭合的F112.0的状态也变成了“0”,这样Q32.0的状态保持为“0”,主轴停转。Bl、B2由于Q32.0随F111.7瞬间断开测得速度不正常而使F112.0状态变为“0”。主轴起动的条件F111.7受多方面因素的制约,从梯形图上观察,发现F111.6的瞬间变“0”引起Flll.7的变化,向下检查梯形图PB8.3,发现刀具卡紧标志F115.1瞬间变“0”,促使Flll.6发生变化,继续跟踪梯形图PB13.7,观察发现,在出故障时,I21.1瞬间断开,使F115.1瞬间变“0”,后使主轴停转。I21.1是刀具液压卡紧压力检测开关信号,它的断开指示刀具卡紧力不够。由此诊断故障的根本原因是刀具液压卡紧力波动,调整液压使之正常,故障排除。
3结束语
通过典型实例与故障现象对数控系统、立式加工中心自动换刀故障、配备FANUC0T系统的某数控车床、配备SINUMERIK810数控系统的双工位、双主轴数控机床等运行中存在的问题加以分析,并作出相应的故障排除方法。
1.应用背景
在冶金,化工,电力,制药等许多大型工程中,空压站建设是一项重要的辅助工程。空压站的主设备为空气压缩机,空气干燥器,配套过滤器,储气罐,连接管道和阀门等组成一供气系统。大型空压站通常拥有多套设备,以保证不同负荷的需求。确保合格的供气品质,满足稳定的气源压力,供气流量的自动调节等是空压站自动化的基本任务。随着自动化水平的不断提高,建设无人值守空压站的要求已是一个发展趋势。
本案例应用于上海宝钢集团上钢一厂连铸连轧项目的大型空压站。该站有6台每分钟供气200立方的螺杆式空压机,6台200立方处理量的冷冻式干燥器,另有两台80立方处理量的吸附式干燥器,采用母管制连接方式生产压缩空气。用户要求:
1)每台设备应有自动控制和联锁保护装置,并配有触摸屏供现场观察各工艺参数和设备状态,可手动/自动切换操作及紧急停机;
2)现场控制室应有计算机操作站,通过建立设备网络,监控整个生产过程;
3)空压房的操作站应与厂区控制中心联网,由控制中心的控制器实时远程监控,实现空压站无人值守。
2.系统构成
2.1.控制网络结构的确立
由于控制中心选用AB公司的PLC构筑自控系统,并指定采用DH+网络实施远程联网。为保持一致性,空压站自控设备选用AB公司的小型PLC——SLC-500系列可编程控制器,其带有DH+网络接口,支持DH+和DH-485网络协议。原设计推荐为单一DH+网络结构,后仔细分析了生产实际情况和各设备的特点,以及可能存在的问题,综合各方面因素后确立了分级控制网络的实施方案,如图1所示。其基本理由是:
1)技术性考虑,单一结构网络在节点数量较大时安全性不够理想。因为各设备控制器均挂在同一网络上,任何一台出现通信故障都可能影响整个网络,严重时会引起网络瘫痪,无法实现远程监控。本案例的设备总数并不算很多,但考虑到对无人值守的高标准要求,将设备网分为上层DH+和下层DH-485两级网络,以达到分散危险,提高网络有效性和可靠性的目的。
2)经济性考虑,满足基本要求的前提下,采用低成本的微型PLC替代。干燥器设备的生产工艺相对较简单,控制点数不到10点,模拟量信号输入点数也不多,动态响应的时间常数相对较大,微型PLC——Micrologix1200可以满足要求。其成本可降低一半,每套约节省2万元,总计可达15万。
分级网络的特点:
a)远程控制网——DH+网络(增强型数据高速公路)连接控制中心控制器与空压站主控制器0#SLC,传输空压站系统的重要信息参数及各设备运行状态,并实现控制中心的远程控制操作。
b)上层设备网——DH+网络,连接现场主控制器0#SLC,1#-6#空压机子站SLC,以及作为通信控制器的7#SLC。0#SLC除负责与远程控制网连接外,还承担所有子站的信息集成和控制信号的传递。
c)下层设备网——采用DH-485网络,7#SLC通信控制器作为上下网的联接器集成各干燥器控制子站1#-8#M1200的数据信息,并传递远程控制信号。M1200和触摸屏均通过通信模块NET-AIC挂接到DH-485网上。
DH+网络为AB公司推出的工业局域网之一,它是早为可编程序控制器提供远程编程支持的控制网络。它可以在可编程序控制器(PLC-5、PLC-3、SLC5/04)、操作员界面系统、个人计算机、主计算机、数字控制设备、可编程的具有RS-232-C/RS-422接口的设备之间提供点对点通信。一个DH+网络多可以连接99个DH+链路,每个DH+链路多可以连接64个节点(智能化设备)。它采用双绞线或屏蔽同轴电缆连接,每个链路的传输速率为57.6KBps,115.2KBps和230.4KBps三种可选,传输距离可达10,000英尺(3048米)。DH+网络支持从远程链路进行组态、编程以及故障查询等。
DH-485是一种对信息传送有时间苛刻要求的、高速确定性的工业局域网络,主要用于车间级各种设备之间的数据传递;具有多主功能,在令牌传送协议下工作,网络的大长度为1219m。DH-485能够连接多达32个节点的设备,包括SLC500和Micrologix1200可编程控制器、操作员终端和个人计算机等。其大传输速率可达19.2KBps。
图1分级控制网络示意图
2.2硬件配置
现场控制室——操作站计算机PC,主控制器0#SLC(SLC-504)带有标准RS-232C/DH+/8针圆形接口,共3个网络接口。配置模拟量输入/输出模块,开关量输入/输出模块,共计128点,所有开关量输出均采用继电器隔离。0#SLC控制各设备子站以外的系统测点和阀门。
空压机子站——1#-6#SLC可编程控制器(SLC-504),分别配有包括模拟量输入在内的64点I/O模块;通过DH+接口连接到上层设备网。
干燥器子站——1#-8#M1200微型可编程控制器(Micrologix1200自带24点I/O),配接12点模拟量输入I/O模块,通过NET-AIC通信模块接入DH-485下层设备网。PV-500彩色触摸屏也由通信模块的9针插头连接到DH-485网。
2.3.软件组成和工作程序
网络连接软件RSLinx它在车间级设备与各种应用软件之间提供通讯功能,它可组态网络的通讯协议(即选择PLC控制网络的协议,如DH-485协议,DH+协议),传输波特率,驱动程序等,完成网络的初始化和令牌管理。
编程软件RSLogix500可使用户在DH-485网或DH+网上对控制器(SLC500、Micrologix1200)进行编程,网络上的任一个工业终端可以用来对网络上的所有控制器编程。用户既可以将程序下载到有关设备中,又可以从设备上载已有的程序,调试程序,监视设备的运行。
工作站组态软件RSView32设在现场控制室的操作站用来监视和操作整个生产过程,为控制系统提供通讯、显示及报表管理等功能,
各设备控制器自成一子系统,其应用程序功能包括:信息采集,设备控制,故障报警,联锁保护,以及数据处理和通信传输。
通信传输工作程序如图2所示。在本案例中,从控制中心控制器经现场控制室操作站到7#SLC通信控制器,均采用自上而下的方式读/写目标控制器的数据区数据,由数据传送指令完成数据通信,实现信息集成和远程控制。
图2通信传输工作流程示意图
3.难点问题和解决方法
整个控制系统随同设备于2003年7月初步完成安装调试工作,进入试生产。2004年2月正式投产,满负荷运行,情况良好,达到设计的预期目标。期间出现过的主要问题为:
1)通信故障引起远程监控失效两次(上层设备网)。分析可能的原因,通信电缆使用了带屏蔽的普通信号电缆而非控制设备规范要求的双绞线屏蔽电缆,易受现场干扰;软件方面对通信异常未设置必要的处理程序。
解决方法——将原来115.2KBps通信传输速率降低到57.6KBps,以提高数据传输的可靠性;软件方面做了相应的改动,此后未再出现过类似通信故障。
2)通信传输延时,实时控制滞后(下层设备网)。经分析获悉,DH-485令牌总线网络结构的工作模式使得7#SLC通信控制器需要多个循环才能对下层网各设备控制器扫描一遍,加之网络传输速率相对较低,在传输数据量较大时,出现控制延时达7-8秒。
解决方法——由于系统结构已定,硬件无法改变,在软件方面加以改进。数据传输速率提高到上限19.2KBps;再修改软件程序,采用控制操作指令优先的策略,控制滞后的操作可得到改善。
4.小结
·控制系统网络化可有效实现空压站远程监控,无人值守。本案例的成功实施是一个很好的示例。
·分级控制网络的实施,分散了故障危险,可提高网络运行的有效性和可靠性。
·综合分析生产实际情况,以及全面评价控制设备的各项性能指标,有助于制订经济性的控制方案,从而降低投资成本,提高经济效益。
改进方向:
1)引入故障检测和故障诊断的处理程序,系统的智能化程度可得到提高,有利于改善自控系统的有效性和可靠性。
2)优化调度策略,软件联锁保护等自动控制功能模式的应用,有望将自动化水平提升到更高层次,并由此获得更大的效益
1引言
切纸机械是印刷和包装行业常用的设备之一。切纸机完成的基本动作是把待裁切的材料送到指定位置,进行裁切。其控制的核心是一个单轴定位控制。我公司引进欧洲一家公司的两台切纸设备,其推进定位系统的实现是利用单片机控制,当接收编码器的脉冲信号达到设定值后,单片机系统输出信号,断开进给电机的接触器,电磁离合制动器的离合分离,刹车制动推进系统的惯性,从而实现jingque定位。由于设备的单片机控制系统老化,造成定位不准,切纸动作紊乱,不能正常生产。但此控制系统是早期产品,没有合适配件可替换,只能采取改造这一途径。目前国内进行切纸设备进给定位系统改造主要有两种方式,一是利用单片机结合变频器实现,一是利用单片机结合伺服系统实现,此两种改造方案成本都在两万元以上。并且单片机系统是由开发公司设计,技术保守,一旦出现故障只能交还原公司维修或更换,维修周期长且成本高,不利于改造后设备的维护和使用。我们结合自己设备的特点提出了新的改造方案,就是用plc的高速计数器功能结合变频器的多段速功能实现定位控制,并利用hmi(人机界面humanmachineinterface)进行裁切参数设定和完成手动操控。
2改造的可行性分析
现在的大多plc都具有高速计数器功能,不需增加特殊功能单元就可以处理频率高达几十或上百khz的脉冲信号。切纸机对进给系统的精度和响应速度要求不是很高,可以通过对切纸机进给系统相关参数的计算,合理的选用编码器,让脉冲频率即能在plc处理的范围内又可以满足进给的精度要求。在进给过程中,plc对所接收的脉冲数与设定数值进行比较,根据比较结果驱动相应的输出点对变频器进行输出频率的控制,实现接近设定值时进给速度变慢,从而减小系统惯性,达到jingque定位的目的。当今变频器技术取得了长足的发展,使电机在低速时的转矩大幅度提升,从而也保证了进给定位时低速推进的可行性。
3主要控制部件的选取
3.1plc的选取
设备需要的输入输出信号如表1所示。
表1plc输入输出分配表 针对这些必需的输入点数,选用了fx1s-30mr的plc,因为选用了人机界面,其它一些手动动作,如前进、后退、换刀等都通过人机界面实现,不需占用plc输入点,从而为选用低价位的fx1s系列plc成为可能,因为fx1s系列plc输入点多只有16点。此系列plc的高速计数器具有处理频率高达60千赫的脉冲的能力,足可以满足切纸机对精度的要求。
3.2编码器的选取
编码器的选取要符合两个方面,一是plc接收的高脉冲频率,二是进给的精度。我们选用的是编码器分辨率是500p/r(每转每相输出500个脉冲)的。通过验正可以知道此分辨率可以满足上面两个条件。验证所需的参数:电机高转速是1500转/分(25转/秒)、进给丝杆的导程是10mm/转。验证如下:
本系统脉冲高频率=25转/秒×500个/转×2(a/b两相)=25khz
理论进给分辨率=10mm/500=0.02mm
由上面的数据知道进给系统每走1mm编码器发出50(此数据很重要,在plc程序的数据处理中要用到)个脉冲信号。由于此工程中对编码器的a/b相脉冲进行了分别计数,使用了两个高速计数器,且在程序中应用了高速定位指令,则此plc可处理的高脉冲频率为30千赫,满足了个条件;我们的切纸机的载切精度要求是0.2mm,可知理论精度完全满足此要求。
3.3变频器和hmi的选取
这两个部件我们都选用了三菱公司的产品,分别是fr-e540-0.75k-ch和f920got-bbd-k-c。f920got是带按键型的hmi,它的使用和编程非常简单方便。它具有以下特点:(1)可以方便的实现和plc的数据交换;(2)通过本身自带的6个功能按键开关,可以控制plc内部的软继电器,从而可以减少plc输入点的使用;(3)具有两个通讯口,一个rs232c(用于和个人电脑通讯)和一个rs422(用于和plc通讯),利用电脑和f920got相连后不仅可以对hmi进行程序的读取和上传,还可以直接对plc的程序进行上传下载、调整和监控。
4plc和hmi程序的设计
此工程中程序的难点主要在于数据的处理上。在切纸机工作过程中除手动让进给定位机构前进后退外,还要实现等分裁切功能和指定具体位置定位功能,并且hmi上还要即时显示定位机构的当前位置。我们为了简化程序中的计算,采用了两个高速计数器c235和c236。c236通过计算前进后退的脉冲数,再进行换算后用于显示进给机构的当前位置;c235用于进行jingque定位。定位过程是这样的,每次进给机构需要定位工作时,通过计算把需要的脉冲数送到c235,不论进给机构前进还是后退c235进行减计数,对c235中的数值进行比较,根据比较结果驱动相应的输出点对变频器进行输出频率的控制,实现接近设定值时进给速度变慢,从而达到jingque定位。因为任何系统都有惯性和时间上的迟滞,变频器停止输出的时间并不是c235中的计数值减小到0时,而是让c235和一个数据寄存器d130比较,当c235中的值减小到d130中的设定值时plc控制变频器停止输出。d130的值可通过人机界面进行修改和设定,在调试时通过修改这个值,以达到定位准确的目的。
1)显示定位机构当前位置的程序
2)实现定位控制的程序段
3)参数设定时的小数点位问题。实际工作中在设定位置时要jingque到0.1mm。这个问题在一些单片机系统中常会遇到,常见的处理办法是加大一个数量级,就是设定数据时,在人机界面上用1代替0.1mm,10代替1mm。我们在处理此问题时通过hmi中对数据的设置和plc的程序编写达到了所见即所得的效果。hmi中主要是对数值的格式要设定好。hmi中的设置画面如图1所示。例如等分裁切10.5mm的纸,就可以在hmi上设定为10.5,而不是像公司的类似其它设备上要设为105,但plc的寄存器d128的内容是105而不是10.5,这样在计算需要的脉冲数时就要用下面一条命令:muld128k5d10(此命令中编程时d11不出现但实际上寄存器d11被占用,不能再应用于其它地方,否则会出现问题。)而不是用:muld128k50d10。
4)编程中其它应注意的问题
●双线圈问题。本工程中利用条件跳转和步进指令避免了双线圈问题。
●误差信号问题。编码器是一种比较精密的光电产品,受振动时不可避免的会出现误差信号,而切纸机在执行裁切动作时会造成很大振动,如果忽视这个现象,定位精度和执行机构当前位置的显示都会不准确。本工程中处理方法参见上面例子程序图1,只有y3、y4接通,即只有进给机构前进和后退时才让c236进行计数,这样就屏蔽了裁切时震动造成的误信号。
5 变频器的参数设置
设定的变频器的主要参数见表2。在调试过程中为了达到定位速度和精度的完美结合,应对三段速设定值,加减速时间和hmi中d130、d200和d202的数值进行相应调整。
表2变频器主要参数设置一览表
6结束语
通过改造过程,完全恢复了我们切纸机的功能,试用三个月以来运行非常稳定。由这个应用实例可以看出结合plc的高速计数器功能,合理的进行应用,在一定场合可以取代高成本的定位控制系统,实现控制系统优的性价比,并且由于选用通用开放的plc—变频器集成方案,为企业后期自主设备管理带来长远的效益。