6ES7222-1BD22-0XA0多仓发货
1 引言
目前国内大多数锅炉汽包水位都采用串级三冲量调节系统控制。锅炉燃料是炼铁过程中产生的尾气,其可燃成分主要是CO。受高炉炉况的影响,尾气压力及CO含量时常变化,锅炉的燃烧状况也随之变化,汽包水位及蒸汽压力变化较大,串级三冲量调节系统不能保证汽包水位在规定的范围内,只能采用手动方式,通过电动执行机构,调节管道阀门的开度来改变给水流量,以维持汽包水位在规定的范围内。这种方式不仅调节不便,浪费大量电能。工业蒸汽锅炉的过程控制系统包括汽包水位控制系统和燃烧过程控制系统,两系统在锅炉运行过程中互相耦合,需要较高的控制水平才能达到有效运行。
结合国内某中型电厂的2台30T燃煤蒸汽锅炉,这2台锅炉通过1个给水母管分别给各自汽包供水,用汽量小的季节,2台锅炉只运行1台,当用汽量较大时,则必须2台锅炉运行。由于给水泵额定功率为37kw,一般情况下,1台锅炉运行时,只开1台给水泵余量仍较大,而2台锅炉运行且用汽量较大时,只开1台给水泵无法满足需要,而开2台给水泵后,相对单台锅炉运行时,余量更大。由于2台锅炉分别由2套DCS系统控制各自的电动阀门调节各自汽包的给水量,运行中,阀门开度较小造成给水母管压力较大,不仅浪费了大量的电能,较高的水压还可能对管道、水泵叶轮和阀门造成损害。如图1所示。
图1 给水原理图
2 系统分析及设计
变频技术以其在节能与恒压方面的优越性能可以解决水压控制系统存在的以上问题。考虑选用单片机或PLC与变频器结合为核心构成的系统都能达到较好的控制效果。但在软件设计上,PLC比单片机的编程更简洁、直观;从硬件接口考虑,单片机电路稍微复杂一些;从经济方面考虑,由于PLC工艺的日渐成熟,要根据现场情况调整系统参数,PLC的软件中时间参数的调整更简单,这样更有利于售后服务人员掌握。基于系统运行现状,本着既能节能降耗,又能控制简便、安全且投资较少的原则,选用了西门子MM430变频器和罗克韦尔PLC-5型PLC作为控制核心,再加上PSW7调节器与WSP300压力变送器,控制效果非常好,软件设计简单,硬件接口简易可行、可靠性高,整个系统的性价比非常高。具体如图2所示。
图2 控制原理图
在本方案中,充分利用了锅炉层有的DCS控制系统,增加了变频器、可编程序控制器(PLC)和控制信号转换装置。
2.1硬件控制系统
(1) 罗克韦尔PLC-5型PLC
我们选择的PLC-5/40E CPU,内存容量大,数据处理能力强,网络功能强大,带有以太网网口,不需要额外以太网通讯模块。
PLC-5/40E CPU使用钥匙开关改变处理器操作模式:
RUN(运行)
运行模式下,用户不能创建或删除程序文件,创建或删除数据文件,或编程软件改变操作模式。
PROG(编程)
编程模式时,用软件编程不能改变操作模式
REM(远程)
编程软件,远程编程、远程测试、远程运行模式之间改变。
RSLogix 5编程软件具有可靠通讯能力、强大编程功能和zhuoyue诊断能力和监控能力,以及运行控制功能:
诊断和故障查找工具
可靠通讯功能
统一项目视图
灵活梯形图逻辑
符号编程
可选梯形图视图
容易通信组态
利用RSLogix 5梯形逻辑编程软件,可以优化系统性能,节省项目开发时间,提高生产率。上位机监控软件RSView32是罗克韦尔自动化公司推出组态软件平台,它使用方便,可以构造灵活界面和强大功能,用RSView32组态软件能开发出较强组合画面:
快速灵活画面切换
灵活有效报警方式
强大功能和简单直观操作方式
灵活实用设置功能
实用管理功能
利用上位机监控软件RSView32,坐中央控制室,就可以监控现一切机械化设备,对现场生产情况一目了然。
(2) 西门子MM430变频器
MM430变频器是西门子公司新研制生产的一种适用于各种变速驱动应用场合的高性能变频器(调试简单、配置灵活),它具有新的IGBT技术和高质量控制系统,完善的保护功能和较强的过载能力以及较宽的工作环境温度,安装接线方便,两路可编程的隔离数字输入、输出接口以及模拟输入、输出接口等优点,使其配置灵活多样,控制简单方便。
2.2运行分析
(1) 当1台锅炉运行时
由于只开1台给水泵,就足够锅炉汽包所需用水量,故此时,系统只对运行锅炉的汽包水位进行恒液位控制即可。将切换开关置于相应位置,通过锅炉原有DCS控制系统中的手动操作器将控制该锅炉汽包进水量的电动阀完全打开后,再通过控制信号转换装置切断该控制信号,使原有控制回路断开,电动阀保持全开状态,将该锅炉汽包液位信号切入PLC,让PLC将该锅炉汽包液位信号进行PID运算处理后,再由控制信号转换装置,将PLC输出的4~20mA模拟信号传递给变频器,从而控制变频器的输出转速。
在本控制过程中,关键的问题是过程参数PID (P:比例系数I:积分系数、D:微分系数)的整定。由于工业锅炉运行过程中,用汽量的多小和蒸汽压力的大小,决定了给水流量的大小和给水压力的大小。为了保证系统的相对稳定运行,不出现大的波动,对生产造成影响,在调试过程中,应多次反复调整PID参数,直至出现佳控制过程。
(2) 当两台锅炉同进运行时
由于2台锅炉分别由两套DCS系统控制,在运行过程,蒸汽并网后压力相同,但由于燃烧过程中存在不确定性,两台锅炉汽包各自的液位就必然存在差异。单台锅炉运行中所用的恒液位控制方案在此就不再适合。通过给水原理图(图1)我们不难发现,要对2台锅炉汽包的液位分别控制,理想的方案是将1个给水母管向2台锅炉给水的现状彻底改变,将给水系统分开,使每个锅炉都有自己独立的给水系统,再在此基础上加装变频控制,由1台变频器单独控制1台锅炉的给水。但此方案不仅改动较大,投资较高,且要停产改造,显然是行不通的。为了能在不改变原有系统现状的前提下,更好的利用变频装置,节能降耗,减小系统运行,维护费用,提高原有系统的自动化程度,我们针对该企业2台锅炉的运行特点,设计了一套专用于2台(或2台以上)锅炉运行时的控制方案,即:蒸汽压力和母管给水压力的恒压差控制方案。
当2台锅炉运行时,由于外供蒸汽并管,故蒸汽压力相同,又由于2锅炉由同一母管给水,故给水压力也相同。但由于蒸汽用量的变化不定和锅炉燃烧情况的不同,蒸汽压力是时刻变化的。这样,为了能保证给锅炉汽包供上水,就必须要求给水的压力始终高于蒸汽压力,由图2我们看到,由PLC采集蒸汽压力和母管给水压力,通过处理、比较后,得到二者的差值,再将此差值通过PID运算处理,输出4~20mA的模拟信号给控制信号转换装置。再由该装置将信号传输给变频器,从而控制变频器的运行速度。这样可以保证给水母管压力始终高于锅炉蒸汽压力(压力差的大小可以通过PLC在一定范围内任意调节),但锅炉各自汽包的液位却无法再通过调节变频器的转速去控制。在此,我们充分利用了原有给水控制装置,即汽包各自的进水电动阀门。仍由锅炉原有DCS控制系统采集各自汽包的液位,蒸汽压力,给水压力和给水流量等信号,去相应的调整进水电动阀的开度,从而控制各汽泡液位和进水流量。
此方案由于存在阀门的调节,理论上不能大限度的节能降耗,但实际应用中,由于减小了给水母管与蒸汽压力之间的压力差,使电动阀门的开度由原来的平均10%左右开大到75%左右,系统回水阀门关闭,仍大大节约了能源。且本方案充分考虑了系统运行的安全性,一旦变频器故障,系统可立即自动由变频运行状态切换至原有工频运行状态,完全恢复改造前的运行状态,保证锅炉正常运行。变频故障解除后,仍可方便的手动切换为变频状态,使变频器方便的投入运行,且不影响锅炉的运行。
3 PLC控制系统介绍
罗克韦尔PLC-5是本系统的核心控制器件,它不仅辨识、处理各种运行状态,进行系统间的逻辑运算和联锁保护,还对输入的多个模拟信号进行处理、运算后,输出标准的模拟信号控制变频器的运行速度。主程序结构较复杂,其中,对液位信号进行PID运算的子程序,原理图和程序框图如图3、图4所示。
图3 PID原理图
图4 程序流程框图
4 注意事项
4.1隔离
周密完善地考虑器件或设备的布置及布线,并尽量增大干扰源与受扰电路之间的距离,将大大降低干扰的传播,减少系统的故障率。在实际安装布线时,应按其对干扰的灵敏度或按其本身功率的大小分门别类的进行处理,布置的顺序是:低电平模拟信号,一般数字信号,交流控制装置,直流动力装置,交流动力装置等。按照这样的顺序布置使其相互隔开,保持一定距离,在安装场合受到限制、设备要求体积小的情况下,还需要增加以下措施。
(1)使所有的信号线很好地绝缘,使其不可能漏电,这样,防止由于接触引入的干扰;
(2)将不同种类的信号线隔离铺设(在不同一电缆槽中,或用隔板隔开),我们可以根据信号不同类型将其按抗噪声干扰的能力分成几等。
(3)模拟量信号(模人、摸出,特别是低电平的模人信号如热电偶信号,热电阻信号等)对高频的脉冲信号的抗干扰能力是很差的。建议用屏蔽双绞线连接,且这些信号线必须单独占用电线管或电缆槽,不可与其它信号在同一电缆管(或槽)中走线。
(4)低电平的开关信号(一些状态干结点信号),数据通信线路(RS232、EIA485等),对低频的脉冲信号的抗干扰能力比上种信号要强,但建议好采用屏蔽双绞线(至少用双绞线)连接。此类信号也要单独走线,不可和动力线和大负载信号线在一起平行走线。
(5)高电平(或大电流)的开关量的输入输出、CATV、电话线,以及其它继电器输入输出信号,这类信号的抗干扰能力又强于以上两种,但这些信号会干扰别的信号,建议用双绞线连接,也单独走电缆管或电缆槽。
4.2屏蔽
屏蔽干扰源是抑制干扰的有效的方法。通常变频器本身用铁壳屏蔽,不让其电磁干扰泄漏;输出线好用钢管屏蔽,特别是以外部信号控制变频器时,要求信号线尽可能短(一般为20m以内),且信号线采用双芯屏蔽,并与主电路的输入和输出线及控制线(AC220V)完全分离,决不能放于同一配管或线槽内,周围电子敏感设备线路也要求屏蔽。为使屏蔽有效,屏蔽罩必须可靠接地。
4.3联锁
锅炉给水是锅炉运行过程中至关重要的环节之一,其运行的稳定性与可靠性直接关系到整个锅炉系统乃至整个企业生产运行的稳定与安全。一旦变频器出现故障而停车后,系统可自动切换至原有工频控制系统而不影响生产,这一联锁措施至关重要。
5 结束语
经过实际的调试和运行实践证明,采用罗克韦尔自动化公司产品和技术实现的该系统在国内某中型电厂锅炉给水控制系统的实际运行中,取得良好的效果,并获得用户的。
(1)该系统节能效果显著,自投入运行以来冬夏两季日均节电约35%。
(2)该系统大大降低了操作工人的操作难度,减少了运行故障率,减少了检修次数。
(3)能合理地应用设备,提高整个系统的运行效率,提高设备运行寿命。
1 引言
风能是可再生能源中发展快的清洁能源,也是具有大规模开发和商业化发展前景的发电方式。我国风能资源储量丰富,发展风能对于改善能源结构缓解能源短缺具有重大现实意义。近年来,我国风电产业规模逐步扩大,风电已成为能源发展的重要领域。
在风电技术发展方面,风力发电机单机容量朝着大型化发展,兆瓦级风力机已经成为了国际风力发电市场的主流产品。目前大型风力发电机组普遍采用变桨距控制技术,例如,VESTAS的V66-1.65MW、V80-2MW,ENERCON的E-66-1.8MW、E-58-1MW, GE的1.5MW、2.5MW、3.6MW机组,REPOWER的MD77-1.6 MW、MM82 -2MW,NORDEX的S77/1.5MW等都采用变桨距系统。
变桨距调节是沿桨叶的纵轴旋转叶片,控制风轮的能量吸收,保持一定的输出功率。变桨距控制的优点是能够确保高风速段的额定功率,额定功率点以上输出平稳、在额定点具有较高的风能利用系数、提高风力机组起动性能与制动性能、提高风机的整体柔性度、减小整机和桨叶的受力状况。国际风力发电市场的主流产品是变速变桨距机组。
世界上大型风电机组变桨距系统的执行机构主要有两种,液压变桨距执行机构和电动变桨距执行机构。其中,电动变桨距系统的桨距控制通过电动机来实现,结构紧凑、控制灵活、可靠,正越来越受到大多数整机厂家的青睐,市场前景十分广阔。
目前,我国MW级变速恒频风电机组电动变桨距系统产品一直依赖进口,国外比较有代表性的有德国LUST、SSB、美国GE 公司的产品。其高昂的产品价格、技术服务的不足和对关键技术的封锁严重影响了我国风电产业的健康快速发展。风力发电机向着大型化的方向发展,变桨距控制技术已经成为风力发电的关键技术之一,研制电动变桨距系统实现大型风力机电动变桨距控制技术国产化、产业化的要求十分迫切。掌握电动变桨距控制技术将改变国外公司对变桨距控制技术垄断的现状,提高我国风电关键技术的研制能力,降低风力发电的成本;对加快拥有自主知识产权的风电设备研制,大力发展风电事业具有重要意义,从而使我国在该领域的研究达到国际先进水平。
变速变桨风力发电机组是风力发电技术发展的主流方向,控制系统是机组的关键部件之一。控制系统的性能优劣对风机运行的效率和使用寿命有至关重要的影响。20世纪90年代,国外便开始了对变速风力机的运行特性和控制策略的研究,并取得了一系列的成果,生产制造出成熟可靠的商业化运营的控制系统产品。目前的研究热点集中在基于现代控制理论的新型控制算法在风力发电控制系统中的应用上,以期提高风力机的运行效率,减小疲劳载荷,改善输出电能质量。我国风电产业起步较晚,目前对变速风电机组的运行特性及规律缺乏深入研究,在控制系统的产业化项目中,缺乏优的控制策略依据。深入研究风电机组及风力机的运行特性和规律对于控制系统的分析与设计具有十分重要的指导意义。
大风能捕获是控制系统的重要功能之一,它直接影响的风力发电机组的运行效率。对于提高风电机组的发电量,减小风电成本具有重要意义。而传统的控制方法存在诸多不足,引起较大的能量损失,新型控制算法的研究和应用,可以有效提高风能利用效率,实现大风能捕获。
为了获得足够的起在变桨距系统中需要具有高可靠性的控制器,本文中采用了罗克韦尔 SLC 500系列可编程控制器(PLC)作为变桨距系统的控制器,并设计了PLC软件程序,在国外某风电公司风力发电机组上作了实验。
2 变桨距风电机组及其控制策略
变桨距调节是沿桨叶的纵轴旋转叶片,控制风轮的能量吸收,保持一定的输出功率。如图1所示为变桨距风力发电机的原理图。变桨距控制的优点是机组起动性能好,输出功率稳定,停机安全等;其缺点是增加了变桨距装置,控制复杂。
图1 变桨距风电机组原理图
在风力机设计的初期,设计人员就考虑到了变桨距控制,由于对空气动力学特性和风力机运行工况认识不足,控制技术还不成熟,风力机的变桨距机构可靠性不能满足运行要求,经常出现飞车现象。直到20世纪90年代变桨距风力机才得到广泛的应用。目前大型风力发电机组普遍采用变桨距控制技术,例如, VESTAS的V66-1.65MW、V80-2MW,ENERCON的E-66-1.8MW、E-58-1MW,ENRON Wind的1.5S-5MW,NORDEX的S77/1500KW等都采用变桨距结构。
定桨距控制,风力机的功率调节完全依靠叶片结构设计发生失速效应使高风速时功率不增大,但由于失速点的设计,很难保证风力机在失速后能维持输出额定功率,一般失速后功率小于额定功率[1][4];而变桨距风力机可以根据风速的大小调节气流对叶片的功角,当风速超过额定风速时,输出功率可以稳定在额定功率上。如图2所示为定桨距风力机和变桨距风力机的输出功率比较曲线。在出现台风的时,可以使叶片处于顺桨,使整个风力机的受力情况大为改善,可以避免大风损害风力机组。在紧急停机或有故障时,变桨距机构可以使叶片迅速顺桨到90°,风轮速度降低,减小风力机负载的冲击,延长风电机组的使用寿命。
图2 变桨距和定桨距风力机的功率曲线
变桨距控制技术关系到风力发电机组的安全可靠运行,影响风力机的使用寿命。随着变桨距风力机的广泛应用,许多学者和研究人员投入了变桨距控制技术及变桨距风力机结构的研究。目前人们主要致力于通过控制桨距角使输出功率平稳、减小转矩振荡、减小机舱振荡等技术的研究。Vestas公司推出了OpiTip(佳桨距角)风力发电机组,不但优化了输出功率,有效的降低的噪音。
目前变桨机构有两种:一种是液压变桨距执行机构;另一种是电动变桨距执行机构。液压变桨控制机构具有传动力矩大、重量轻、刚度大、定位jingque、执行机构动态响应速度快等优点,能够保证更加快速、准确地把叶片调节至预定节距。目前国外大公司如丹麦VESTAS的V80-2.0MW风机等都采用液压变桨机构[5][6]。电机变桨执行机构是利用电机对桨叶进行控制,电动变桨没有液压变桨机构那么复杂,也不存在非线性、漏油、卡塞等现象发生,目前受到了许多厂家的关注。如REPOWER的XD77、MM92、GE公司生产的兆瓦级风力发电机就采用了电动变桨距机构。
如图3所示为液压变桨距执行机构原理图,桨叶通过机械连杆机构与液压缸相连接,节距角的变化同液压缸位移成正比。当液压缸活塞杆向左移动到大位置时,节距角为90°,而活塞杆向右移动大位置时,节距角一般为-5°。液压缸的位移由电液比例阀进行jingque控制。在负载变化不大的情况下,电液比例方向阀的输入电压与液压缸的速度成正比,为进行jingque的液压缸位置控制,必须引入液压缸位置检测与反馈控制。
图3 液压变桨机构框图
电机变桨距控制机构可对每个桨叶采用一个伺服电机进行单独调节,如图4所示。伺服电机通过主动齿轮与桨叶轮毅内齿圈相啮合,直接对桨叶的节距角进行控制。位移传感器采集桨叶节距角的变化与电机形成闭环PID负反馈控制。在系统出现故障,控制电源断电时,桨叶控制电机由UPS供电,将桨叶调节为顺桨位置。
图4 电动变桨距系统原理图
随着风力发电机技术的不断进步,风力机已经朝着大型化方向发展。兆瓦级风力机已经成为市场上的主流机型,在国外的海上风电场广泛采用2-5MW风力发电机组。目前的变桨距风力机大多采用三个桨叶统一控制的方式,即三个桨叶变换是一致的。但由于现代大型风力机叶片比较大,一般几十米甚至上百米,整个风轮扫过面上的风速并不均匀,由此会产生叶片的扭矩波动并影响到风力机传动机构的机械应力及疲劳寿命;由于叶片尺寸较大,每个叶片有十几吨甚至几十吨重,叶片在运行的不同位置受力状况也是不一样的,故叶片重力对风轮力矩的影响也是不能忽略的。显然对三个叶片进行独立控制更加合理。通过独立变桨控制,可以大大减小风力机叶片负载的波动及转矩的波动,进而减小了传动机构和齿轮箱的疲劳度以及塔架的振动,而输出功率能基本恒定在额定功率附近。
3 变桨控制器的设计
3.1 系统的硬件构成
本文实验中采用的电动独立变桨距系统由交流伺服系统、伺服电机、后备电源、轮毂主控构成。电动变桨距系统结构如图5、6所示。系统参数与接口的设计依据为SSB1.5MW双馈式风力发电机组变桨距系统。
图5 电动独立变桨距系统结构
图6 电动独立变桨距系统结构2
本文中的风电系统涉及风速、风向、振动加速、振动开关、偏航、刹车液压系统、齿轮传动系统、液压、温度等等信号。其中,输入数字量约70-80路;模拟量约10路;温度量约16路;输出数字量约32路;还需要用到发电机转速测量高速计数信号。为了满足需求,采用了罗克韦尔 SLC 500系列PLC。SLC 500有多款不同容量和内置通讯接口的处理器可选。提供大容量多可达64K字(128K字节)的数据/程序内存,SLC 500的模块化I/O系统提供了包括开关量、模拟量和专用模块在内的60多种I/O模块。SLC500系列处理器的程序和数据是以文件的形式在内存中存储的。处理器文件分为程序文件和数据文件,程序文件可高达256个 ,包括处理器信息、梯形图主程序、中断子程序及其他用户根据需要编制的子程序文件;数据文件包括与外部 I/O及所有梯形图程序使用的与指令相关的数据信息。它包含 输出 /输入、状态、位、计时器、计数器、控制结构、整数、浮点数、字符串、ASCII码文件 ,用户可以根 据需要定义除输出 /输入和状态文件以外的可达 256个数据文件。
SLC500控制系统还提供 50多种不同的 I/O模块满足用户的不同需求。本地模块采用硬件寻址方式 ,程序逻辑可直接存取 I/O数据。 (1 )开关量 I/O模块。包括各种输入 /输出 方式和不同的 I/O点数 ,有 4、8、16和 32点开关 量 I/O模块及 8、12和 16点 I/O混合模块等 ,可 与不同电压等级的交流、直流和 TTL电平连接。 其中有负载电流达 2 A和 2. 5 A的大电流继电器模块、固态输出模块和大接通信号延迟时间只 有 0. 3 ms、大关断信号延迟时间只有 0. 5 ms的快速响应直流输入模块。为提高工业应用的可靠 性 ,这些模块都提供了输入滤波和光电隔离功能。 16点 I/O模块上还有可拆卸的接线端子排 ,使接 线和更换模块更容易。 ( 2)模拟量 I/O模块。SLC500系列模拟量 ( 模块有 4路 I/O、4路混合 I/O 2路输入 /2路输 ) 出 模块和高密度的 8路输入模块及快速响应模 块等。输入模块都采用差分输入 ,每路通道可单 独配置成不同等级的电流或电压输入方式 ,高 输入分辨率可达 16 bit精度。具有输入滤波 ,对 电气噪声具有高度的防护能力。输出通道的精度都是 14 bit,提供jingque的控制能力。SLC500系列 模拟量 I/O模块可以选择由框架的背板供电 ,不需外部电源。
系统中,发电机的功率信号由高速功率变送器以模拟量的形式(0~10V对应功率0~800KW)输入到PLC,桨距角反馈信号(0~10V对应桨距角0~90°)以模拟量的形式输入到PLC的模拟输入单元;液压传感器1、2也要以模拟量的形式输入。在这里选用了4路模拟量的输入单元;4路模拟量输出单元,输出信号为-10V~+10V,将信号输出到执行机构来控制进桨或退桨速度;为了测量发电机的转速,选用高速计数单元,发电机的转速是通过检测与发电机相连的光电码盘,每转输出10个脉冲,输入给计数单元。
3.2 系统的软件设计
本系统的主要功能都是由PLC来实现的,当满足风力机起动条件时,PLC发出指令使叶片桨距角从90°匀速减小;当发电机并网后PLC根据反馈的功率进行功率调节,在额定风速之下保持较高的风能吸收系数,在额定风速之上,通过调整桨距角使输出功率保持在额定功率上。在有故障停机或急停信号时,PLC控制执行电机,使得叶片迅速变到桨距角为90°的位置。
风力机起动时变桨控制程序流程如图7所示。当风速高于起动风速时PLC通过模拟输出单元输出1.8V电压,使叶片以0.9°/s的速度变化到15°。此时,若发电机的转速大于800r/s或者转速持续一分钟大于700r/s,则桨叶继续进桨到3°位置。PLC检测到高速计数单元的转速信号大于1000r/s时发出并网指令。若桨距角在到达3°后2分钟未并网则由模拟输出单元给比例阀输出-4.1V电压,使桨距角退到15°位置。
图7 风力机起动变桨控制程序流图
发电机并上电网后通过调节桨距角来调节发电机输出功率,功率调节程序流程图如图5所示。当实际功率大于额定功率时,PLC的模拟输出单元CJ1W-DA021输出与功率偏差成比例的电压信号,并采用LMT指令使输出电压限制在-4.1V(对应变桨速度4.6°/s)以内。当功率偏差小于零时需要进桨来增大功率,进桨时给比例阀输出的大电压为1.8V(对应变桨速度0.9°/s)。为了防止频繁的往复变桨,在功率偏差在±10KW时不进行变桨。
图8 变桨调功程序流程图
在变桨距控制系统中,高风速段的变桨距调节功率是非常重要的部分,若退桨速度过慢则会出现过功率或过电流现象,甚至会烧毁发电机;若桨距调节速度过快,不但会出现过调节现象,使输出功率波动较大,会缩短变桨缸和变桨轴承的使用寿命。会影响发电机的输出功率,使发电量降低。在本系统中在过功率退桨和欠功率进桨时采用不同的变桨速度。退桨速度较进桨速度大,这样可以防止在大的阵风时出现发电机功率过高现象。
图8为变桨距功率调节部分的梯形图程序。100.08是启动功率调节命令,当满足功率调节条件时,继电器100.08由0变为1;D2100存放的是发动机额度功率与实际功率的偏差,当偏差ΔP满足-10KW<ΔP<10KW时将0赋给D2100;60.07为1时即功率偏差为负值,D2100中的功率偏差按一定比例进行缩放,并通过LMT指令限位输出到比例阀,输出的小值对应-4.1V电压;若继电器60.07为0,即功率偏差为正值,将D2100的值通过SCL3指令按比例系数缩放。
4 结束语
在国内一些机构已经对变桨距控制进行了一定的研究,如沈阳工业大学、浙江大学、新疆大学等,其中浙江大学对独立变桨距风力机控制做了初步的探讨,变桨距控制在国内还没有成功应用的例子,变桨距控制在国内还处于理论研究阶段,较高风力机成本也限制了实验的进展,在国内主要做了理论研究和仿真分析。金风公司在今年生产安装了1.2MW的变桨距直驱永磁同步风力发电机,其变桨控制系统还没有实现国产化,还依靠国外的技术。东方汽轮机生产的1.5MW FD70风力机采用了LUST的独立变桨控制器。