6ES7516-2PN00-0AB0详细说明
1. 随着生产技术的发展
挤出成型成为塑料加工工艺中的主要加工方法之一,大部分的热塑性塑料均可使用此方法。目前,挤出成型,已经广泛应用于各个行业,特别是在塑料厂。
塑料厂在塑料挤出机配用电机一般为整流子电机或电磁调速电动机,电费在塑料制品成本中占有相当的比重。降低电费,降低塑料制品成本是用户考虑的一个重要方面。 采用科创力源变频器配用普通异步电动机可以大大降低吨塑料制品电费,同比整流子电机节能20%-30%,同比滑差电机节能50%以上,变频软件起动,无冲击电流,起动平稳,可**产品的质量。采用变频控制技术可**电动机的转速,**产品的质量,配用电机温度不变,有效地延长了电机使用寿命,同比原拖动方式降低了维修费用,可靠性高。变频器具有过压、欠压、过流、短路、缺相、温度等各种保护功能,对安全生产起了保障作用。
2、挤出机主传动的特点
a.主传动是挤出机的主要组成部分之一,它的作用是驱动挤出机的螺杆,并使螺杆能在选定的工艺条件下,以必需的转矩和转速均匀的旋转,完成挤出过程。它在其适用的范围内能够提供大的转矩输出和一定的可调速范围,还使用可靠,维修方便。
b.由于挤出机螺杆驱动功率影响因素很多,很难找出函数关系,没有**的功率计算方法,在平时应用中采用经验公式的方法计算:
P=KDDn
其中,p-功率;K-经验系数;D-螺杆直径;n-螺杆转速;
c.对挤出机的速度要求有两个方面:
(1)能实现无级调速 (2)应有一定的调速范围
3、挤出机的变频控制
挤出机在运行的过程两个主要的因素就是压力和速度,他们直接关系到挤出机的工艺因素,科创力源变频器CM2000E系列作为一款性能强劲的矢量型变频器变频器力恒定下,重要的就是螺杆转速了。具备了矢量控制方式和V/F控制方式,使得科创力源变频器CM2000E系列在挤出机领域有了更广泛的应用。
前言
随着微电子技术的飞速发展,控制技术日益完善和成熟,作为工业控制核心部件的PLC,其控制功能越来越强,体积越来越小,运行也越来越高速可靠。深圳市德天奥科技有限公司板式SL1S-32MR采用进口ARM控制芯片,编程软件完全兼容三菱PLC编程软件,价格只需进口的一半,修改维护非常方便,可灵活运用在各种工业自动控制场合,如电子、化工、塑料、轻纺、食品、包装等行业中的生产机械、工业流水线、各种机床的工业控制设备中。它为用户提供了采用传统的梯形图逻辑方法以及HJ为用户定制编程方法对一个控制系统进行开发的能力。
系统概述
包装机的控制对象由主控柜、副控柜和两个现场操作盒组成。主控柜内主要有PLC和称重指示控制仪F701以及码盘设定器、袋计数器等。副控柜主要为交流接触器和热继电器,分别控制M1风机电机、M2**机构电机、M3传送机构电机,其中**机构由于有升有降,用了两个接触器。现场操作盒AR1用于料口升降控制,AR2用于传送控制。
控制对象对应IO点表
(1)3个电机M1、M2、M3; (Y00,Y001.,Y002)
(2)4个两位五通电磁阀配合气缸分别控制投料门1(电磁阀YV1)、投料门2(电磁阀YV2、)排料门(电磁阀YV4)和袋口夹松开(电磁阀YV5);(Y003,Y004,Y005,Y006)
(3)6 个限位开关,SQ1 为投料门关位置,SQ3为排料门关位置,SQ4、SQ5、SQ6、SQ7分别对应装袋**机构的料口上位、下位、上限、下限;(X00,X01,X02,X03,X04,X05)
(4)1个光电开关SQ11用于检测料包到传送链板尽头。(X06)主要的机械装置有称量料斗、板式输送机、装袋机构、控制门、排料门等。由于切片是粒状的均匀颗粒,同粉状物料相比流动性好且不粘附,靠自重来落料即可,料斗也不用做特殊操作。其中控制门采用的是双闸门,控制门1和2全开时为快投料,控制门2关闭1开启时为慢投料。
包装工艺过程
(1)称量过程:此系统有自动和手动两种操作方式,但手动方式也是由PLC实现的。手动方式主要用于调试、维修和排除故障,以自动操作为例介绍。PLC向F701 发扣除皮重信号后(此时净重立即设置为 0),打开控制门 1 和 2,由料仓向称量料斗快投料(快投料速度约23kg/s),当达到预置值时关闭控制门2,将快投料改为慢投料(速度约为2kg/s),当料量达到落差值时关闭控制门1,投料结束。稳定后PLC向F701发数据保持信号,F701设置的不足、过量、上限值比较,若适量则“称好”灯亮,若过量或欠量则“超差”灯亮并报警。
(2)**机构动作及放料过程:将空袋夹在放料口上加好,按AR1的“料口升”按钮待“称好”灯亮后料口自动升到上位,风机启动充气15s,充气结束后打开排料门开始放料,当F701发出接近零信号后5s关闭排料门,自动松开袋口夹,袋计数加1,PLC向F701发一个皮重复位命令信号(取消去皮重操作),装满料的袋脱离料口放置在传送机上。
(3)传送过程:按AR2的“传送启动”按钮,M4启动自动传送一个袋位停止,由人工袋口,料口自动降至下位。以后每称好一袋,按传送启动按钮袋即顺序向前传送一个工位。如此循环往复。用叉车及时将传送机上的袋叉走。欠量时允许通过按“慢投”按钮进行补料并自动达到适量;过量时系统除报警外无纠正措施,须按“强制”按钮打开排料门放料。
PLC控制系统
包装系统的核心控制部分选用的是的SL1S-32MR可编程控制器。其硬件配置如图所示:
功能介绍:
○ 编程软件兼容日本三菱FXGP_WIN-C梯形图软件
○ 工作电源AC15V或DC24V
○ 32路I/0输入输出,其中输入16路,输出16路(继电器型)
○ 本机采用高性能进口工业级芯片设计,可适应高电磁干扰的工业环境
○ 高速运算,基本指令每步0.5uS
○ 通信接口有RS232
○ 程序空间为2000步,不用电池记忆,无需维护
○ 内部继电器512点
○ 计数器32点
○ 定时器64点
○ EEPROM数据掉电记忆
○ 编程语言采用梯形图
○ 采用循环扫描工作方式
○ 内置24V/500mA直流电源,可供外围设备使用,如接近传感器等其它元件
○ 一体化紧凑型设计,长×宽×高为158×101×28mm
○ 容易安装使用便利的固定孔安装,安装开孔尺寸为:长×宽152×95mm
一、概述
热风炉是冶金行业生产制备热风的重要设备,为了配合冶炼工艺需用,要求必须不间断供给热风,风温需保持不低于一定的温度。一般在生产上设三座热风炉,炉内砌耐热格子砖。热风炉生产分为燃烧、焖炉、送风三个循环状态:
燃烧时煤气和空气以一定比例在炉内混合燃烧产生热量,格子砖吸热蓄能;当炉顶温度上升到1300℃左右时停止燃烧。完成燃烧的热风炉从炉底通入冷风,冷风在炉内与格子砖进行热交换将冷风加热成具有一定风温的热风后从炉顶流出,供给需要的工艺设备,这一过程为送风。同一时间只有一座热风炉进行送风,此时若另有一座炉燃烧达到设定温度先停止燃烧,关闭该炉的所有进、出口,进行焖炉;待需要送风时才开启送风口和进风口。每座热风炉送风进行一段时间后,格子砖的热能逐渐减少,送出的热风温度降低,当风温降低到一定值时停止送风,切换到燃烧状态,由其他燃烧或焖炉状态的热风炉切换到送风状态。如此循环。热风炉生产主要是操作各个阀门的开闭来实现三种工作状态的切换,涉及的阀门有30多个,阀体体积较大、分布分散、处在户外、操作不便,现场兼有工业煤气等有毒气体的危害,工作条件恶劣。还要监控风温、炉温、烟道温度,原先运行人员均在现场观测,工作量大、效率低,且有高温伤害等危险。故在原工作方式下岗位人员需求大、换炉时间长、工作条件恶劣、效率低下。燃烧过程也存在按经验燃烧,存在燃烧不完全、燃料利用率低、有害气体如CO等排放量较大等问题。
随着PLC技术的成熟、为适应现代工厂自动化发展需要,运用PLC+CRT的方式,实现热风炉燃烧智能控制,所有设备的状态监测、阀门的切换操作均通过上位机监控完成,燃烧比例采用自动控制,替代传统的现场操作模式。
二、运行情况
阀门操作全部改为电动执行机构,通过程控系统发出开、闭控制指令,操作员只需点击鼠标,用键盘给出阀门开度信号,轻松完成。
各处温度监视通过热电阻、热电偶等传感器将温度信号变送输入到程控系统,集中在上位机画面显示,替代人眼观测,实时、高效、安全。
换炉过程既可选择逐一操作单台设备,也可采用程控自动操作;自动换炉时只需选择该座热风炉需要切换的状态,便可由程序控制按工艺顺序自动完成整个换炉的设备操作。
高炉冶炼产生的废气——高炉煤气中含有大量CO经回收处理后供热风炉作为主燃料,既减少废气排放污染,又燃料节约成本。经工艺计算得出与空气燃烧的佳比值,通过程序控制煤气与空气管道的**,使之按此比例混合燃烧,**了燃料的利用率和能效。
程控系统还增加了报警、趋势显示、报表等功能,增加了生产的安全性;自动的报表功能替代人工抄表,减少工作量,生产记录更准确、及时。在传统操作模式下一个运行班组需要10来人左右,在程控操作下,低只需2人即可完成生产运行的操作;运行人员不用在现场频繁奔走,只需在上位机操作台前工作即可,生产环境得到极大改善,劳动安全性和效率大大**。
三、效益分析
结合了**的工业计算机监控技术及现场总线技术,对工矿企业中使用的热风炉进行智能控制的系统。具有集中控制、实时监控、自动燃烧等特点。可以使燃料按佳比值燃烧、燃烧更充分,**燃料利用率、减少污染物排放、保护环境,并使加热炉温度**。2003年在广东韶关冶炼厂一系统热风炉改造中成功应用该智能控制系统后,取代了原有纯手动操作的生产模式,极大**了整个热风炉系统生产自动化水平和生产效率,热风炉换炉周期缩短近1小时、风温**50℃以上,产效**50﹪,充分挖掘出原设备潜力,实现了企业生产的高效、安全、环保、节能,由此带来可观的综合效益。
四、结论
热风炉采用上述中智能燃烧控制技术后,产生较大的经济效益和社会、环境效益:显著节约能源,大大降低企业的生产成本;**产品质量;降低生产设备的故障率;延长设备的使用寿命;降低设备维修工作量;降低噪音;改善操作人员劳动环境。**企业的综合竞争力和发展后劲,建议尽快大力推广应用。