西门子6ES7517-3TP00-0AB0安装调试
一、系统功能
可以自动搜索并定位视野中的金属壳。
能够自动测量金属壳高度尺寸并判断是否合格。
能够进行在线检测,速度达60个/分钟。
系统稳定、高效,成本低。
二、应用现状
根据产品(金属壳)测量要求,需要对高度尺寸进行测量并判定,属于一维尺寸检测范畴。传统的尺寸测量主要依靠员工+卡尺,且必须离线后单个测量,不仅测量精度易受人为因素影响,测量速度不高,每分钟只能检测4个,工作效率很低。由机器视觉构成的自动高速在线检测系统,只要选择合适的硬件,可以对产品进行高速尺寸测量及判定,甚至可以测量多个产品,**了检测效率,不会产生人为因素造成的偏差,保证了产品的质量。
图1-1
三、检测方案
针对金属壳样品进行了多次拍摄及测量实验,因金属壳边数为4条以上,且边距相差较大,如图1-1所示,单个镜头的景深不够,如直接对近边和远边拍摄,远边的图像会变得不清晰甚至呈现模糊状态,这将直接影响测量的精度。对每边进行单独测量,此方案需要至少4个相机对其进行测量。该系统检测每个工件的时间只要0.2秒(由系统的软硬件决定),但把该系统安装到机器上以后,由于每个工件需要由伺服马达驱动的送料机构传送并**定位在指定的检测工位上,这个送料过程要花大约0.8秒的时间,整体检测时间为1秒,即每分钟检测60个。
四、系统配置
4.1 工业相机的确定
根据要求,金属壳的外观尺寸中大的边长为36mm,测量公差精度要求为小于+/-0.1mm,则相机拍摄的视野大小至少为40×30mm,再由图像处理表示法则结合软件亚像素算法,可知相机像素至少为40mm/0..05mm=800Pixels,选择接近此像素数的1280×1024工业相机(即130万象素),具体型号参见 2.4节配置材料表。
4.2 工业镜头的确定
根据所选相机的COMS感光尺寸大小(1/2")、拍摄的视野大小(40*30mm)及镜头的工作距离,选择定焦镜头,可以满足拍摄要求。由于需要进行尺寸测量,选择畸变较小的日本Computal工业镜头,具体型号参见2.4节配置材料表。
4.3 LED光源的确定
选用国产优质的条形光源组合,具体型号参见 2.4节配置材料表。
4.4 图像处理软件
本系统所用检测软件是以美国专用机器视觉软件开发平台经本公司二次开发而成,作为金属壳尺寸检测系统的软件,其集成的机器视觉算法可以适用于一维及二维尺寸测量,且测量结果所见即所得。如图2-1。
图2-1
五、配置材料表
序号 产品型号 产品描述 数量
1 工业数字相机 COMS 130万像素,,USB接口 4
2 工业镜头 日本Computal工业镜头 焦距4.5-12.5mm 4
3 光源及控制器 白色条形光,亮度0-255级可调 4
一、工艺概述
此项目是某英资食品公司制糖生产的一个工艺过程,糖浆进入换热器(壳程蒸汽加热),利用轴流电泵搅拌推进并循环加热,当糖浆温度和浓度达到设定值时出料,出料完成后,人工清洗设备、管道,等待进入下一工艺过程(如下图)。
二、控制要求
1.温度、浓度在线检测并无纸记录;
2.工艺过程实现稳定的自动化控制:循环加热、在线检测,当达到设定的温度、浓度要求时出料,在整个过程中蒸汽加热产品的温度偏差不超过设定温度值的±2℃。
3.从蒸汽锅进料到容缸后,进行循环加热煮糖以达到浓度、温度以及浓度、温度达到后糖浆全部出完进入下一次的一个生产循环必须控制在30分钟以内(蒸汽压力6-8kg/f,180℃)。因煮糖时间过长产品会变质,导至报废。
4.温度值设定范围在100℃--160℃之间。(也就是说这个范围内不论设定哪个温度,在生产过程中都能达到温度控制值偏差范围不大于±2℃。)
5.当本次煮糖过程结束后开始出料的过程中,由于加热缸内的产品容量变化较大,致使温度的变化也校大,允许该阶段的温度在短时间(10秒以内)偏差范围不大于±3℃。
三、工艺流程图
四、系统分析及解决方案
1.系统分析:经过对本项目中的控制对象煮糖加热缸的工艺流程进行分析研究,发现这是一种非线性、时变、大滞后、强耦合、结束条件苛刻的复杂控制对象,如果采用传统的纯PID控制,效果并不理想,在实践中误差达±10℃,无法满足工艺要求。
2.解决方案:为了满足该复杂控制对象的控制要求,本方案引入了当今自动化控制领域**的参数自调整模糊控制技术,结合传统的PID控制,利用可编程控制器(PLC)具有的高速运算、丰富的指令等强大功能作为控制程序的运行平台,能较好地解决系统的非线性、大滞后问题。
3、技术浅析:模糊控制是当今三大新型的智能控制方法之一(其它为专家系统控制、人工神经网络控制)。自1965年L.A.Zadeh教授提出模糊集理论后,1973年E.H.Mamdani教授成功地将模糊控制应用于锅炉和蒸汽机的控制中,获得了比PID控制更好的控制效果;1979年丹麦工程师Ostergaard成功地将模糊控制技术应用于石灰窑生产过程的控制中,揭开了模糊控制技术工业化应用的新篇章。模糊控制规则是以模糊集理论、模糊语言变量和模糊逻辑推理为基础的一种计算机控制系统,是一种从行为上模仿人的模糊推理和决策过程的智能控制方法,是模糊数学与控制理论相结合的产物,能够解决许多复杂而无法建立**数学模型的系统的控制问题。它先将操作人员或专家的经验归结为模糊控制规则,把传感器信号模糊化,并用此模糊输入去适配控制规则,完成模糊逻辑推理,后将模糊输出量进行解模糊判决,变为模拟量或数字量后送到执行器上。
本方案采用的是经过优化的模糊控制方法,即参数自调整模糊控制技术。它的优点是能根据不同阶段温度的实时变化趋势,通过自适应调整机制对模糊控制的比例因子进行在线自动调整,从而更好地改善系统的响应速度,**控温精度。
1、引言
冷轧窄带钢有着非常好的市场,但很多生产厂的轧机设备比较陈旧,特别是电气的装机水平和控制性能较差,直接影响到产品的质量、成材率和产量,当然也影响了企业的经济效益。前人的窄带钢冷轧机电控装置的设计生产经验,结合用户的具体要求,本着高性能,低成本的原则,选择德国VIPA300S系列PLC和英国CT不可逆全数字直流调速装置MENTOR-Ⅱ为控制核心,设计制造了一套五机架冷连轧机的电气控制系统,实现了速度的级联控制和张力的闭环控制,大大**了设备和产品的各项性能指标,取得了较明显的经济效益。
2、系统介绍
2.1 机组情况
五机架冷连轧机是由开卷机、螺旋储料装置、1-5#四辊冷轧机和卷取机等主要机械设备组成,全线没有活套机构,在1-2#、2-3#、3-4#和4-5#机架间设有张力计,1#机架入口和5#机架出口各有一台测厚仪,以测量来料厚度和成品厚度;每个机架为独立的直流传动系统,1-5#四辊冷轧机均为工作辊传动,辊缝按工艺人工摆放,压下控制采用四象限全数字直流调速装置电动压下替代交流电动压下,卷取机也采用了四象限直流传动系统。图1是机组的组成图。
图1 窄带钢五机架冷连轧机布置图
2.2 电气系统
针对窄带钢五机架冷连轧机的工艺特点,选择高性能的控制元器件是满足控制要求的关键。作为控制核心的PLC,选择了VIPA公司300S系列的CPU作为PROFIBUS系统的主站,在主操作台设置了IM253DP从站和一块TP270触摸屏,在两个压下控制柜和卷取控制柜分别设置了S7-200从站,控制1-5#机架的直流控制装置都安装了PROFIBUS扩展板MD24,在1-5#机架的机旁操作箱以及卷取操作台都分别设置了VIPA公司的IM253DP作为从站。
该套PLC系统,以VIPA公司的Speed7系列的CPU 315-2AG12作为主站,从站数量达到了16个。作为主站的CPU315-2AG12,本机自带1M内存(50%程序,50%数据),运算速度高达每毫秒100,000指令,主要采集各个从站的数据,向各个从站传递指令,控制整个轧机;1-5#机架从站主要功能是接受主站传输的指令和数据(例如合闸、运行、速度给定等)以控制每个机架电机,向主站传递信息和数据(例如故障、速度反馈、电流反馈等)以反映每个机架电机的状态;1-5#架旁操作箱从站分别采集各个机架控制的开关量信号;卷取机从站主要功能是传递卷取电机的各种信息和接受主站的各种指令,还进行卷取卷径的计算以实现张力恒定;两个压下从站的功能是控制1-5#压下十台电机,还计算2#和5#压下驱动侧和操作侧的位置;系统200V从站主要采集主操作台对整个机列的操作信号;TP270触摸屏,通过MPI与CPU315-2AG12通讯,主要用于显示各种机列数据(例如机列速度、卷取卷径和设备的故障情况等)。
在本控制系统中,大量选用VIPA公司的IM253DP作为从站,是节省投资的另一个主要方面。IM253DP具有很高的性价比,使用上可以和ET200M相媲美;VIPA公司的IM253DP的尺寸较小,采用35mm标准导轨安装,可以减小机旁操作箱的尺寸,接线采用弹簧卡接的型式,快速,可靠。图2是PLC的配置图
图2 五机架冷连轧机PLC系统配置图
直流电机的直流驱动单元采用的是C.T公司的MENTOR--Ⅱ系列全数字直流控制装置。该系列全数字直流控制装置具有典型的双闭环控制特性,全数字菜单式参数设定,并可在线调整,可编程的模拟量和开关量输入输出,速度反馈可选择电枢电压、测速发电机和码盘,电流环参数自整定功能,装置自检功能,自带小功率磁场驱动及可配套的磁场控制模块FXM5。为了节省投资,1-5#机架直流驱动单元都选用单象限工作的不可逆全数字直流控制装置及磁场控制模块FXM5,采用磁场换向的控制方式,满足点动时对反向的工作要求。
3、系统的控制功能
窄带钢五机架冷连轧机的电气控制系统需要实现:机列的逻辑控制、直流传动控制、速度级联控制、机架间张力闭环控制和卷取张力控制。
3.1 机列的逻辑控制和直流传动控制
这两部分的控制属于基本控制,逻辑控制上主要是在容错方面做了较多工作,因为直流装置采用的是不可逆装置,而工作中,各单机又需要反向点动,做好电机磁场的换向及避免各种误操作对设备造成损坏尤为重要。直流传动控制由于采用了全数字直流控制装置,保证了对给定信号的快速**和稳定可靠地响应,并能准确地反馈各种信号。
3.2 速度级联控制
在冷连轧机的轧制过程中,各机架的速度匹配关系应始终遵循金属秒**相等的原则,针对五机架连轧机,确定3#机架为机列速度基准机架,1#和2#机架按逆向级联方式进行,4#和5#机架按顺向级联方式进行。
按照金属秒**相等的原则,第i机架的速度计算公式是:
Vi=Vi+1/Ki+1
公式中,Vi是本机架的出口线速度,Vi+1是相邻下游机架的出口线速度,Ki+1是相邻下游机架的延伸率。
有三个信号对各机架的速度产生影响:一是机列的主速度给定,根据主操作手给定的机列速度,按相应的级联关系分配给各机架;二是各机架的速度微调,3#机架是基准机架,不需要速度微调,1#、2#和4#、5#机架在操作台上各有一个微调电位器,1#和5#机架是级联终端,它们的微调Vw1、Vw5分别只对本机架产生影响,而2#和4#机架的微调除了影响本机架,还应级联调节1#和5#机架;三是张力闭环调节信号,1-2#机架间的张力调节信号Vz12,附加给1#机架的速度给定,2-3#机架间的张力调节信号Vz23,除了附加给2#机架,还要级联到1#机架,3-4#机架间的张力调节信号Vz34,附加给4#机架,4-5#机架间的张力调节信号Vz45,除了附加给4#机架,还要级联到5#机架,各机架的终速度给定如下:
5#机架:V5=V4*K5 +Vz45+Vw5
4#机架:V4=V3*K4 +Vz34+Vw4
2#机架:V2=V3/K3 +Vz23+Vw2
1#机架:V1=V2/K2 +Vz12+Vw1
作为1#和5#机架的速度微调,因为它们只影响本机架的速度给定,其实是可以直接进直流控制器的,为了充分利用PLC资源,利用PROFIBUS的优点,减少现场布线,将各微调信号都送到了PLC。
3.3 张力闭环控制
连轧机机架间张力的变化主要是由金属秒**的变化引起的,由于在轧制过程中,辊缝基本上是不做调节的,改变轧机的速度就能改变金属秒**,从而达到控制张力的目的。
轧制过程中,PLC定时对机架间的张力反馈值进行采样,根据相应的张力给定计算出张力偏差值,调用PID控制指令,计算出张力调节信号,变换为速度信号形式,分配给相应的机架,达到通过速度实现对张力控制的目的。图3是张力控制框图
图3 张力控制框图
需要说明的是,1-2#和2-3#机架间的张力控制信号对应1#和2#机架的速度给定是正极性,也就是1-2#机架间的张力偏大的时候,PID计算的张力调节信号VZ12是使1#机架的速度增加,减小;而3-4#和4-5#机架间的张力控制信号对应4#和5#机架的速度给定则是负极性的,也就是3-4#机架间的张力偏大的时候,PID计算的张力调节信号VZ34是使4#机架的速度减小,增大。
3.4 卷取机张力控制
卷取机的张力控制由卷取机的从站S7-200来完成,为了使卷取机以恒张力的卷取特性工作,就必须实时计算卷取机的带材卷径;本系统将测速辊的编码器接入S7-200的高速计数通道中,以计算带材长度,将卷取机的测速编码器的零脉冲接入高速计数通道,在S7-200的程序中做了事件中断,本系统设置了卷取机的测速编码器每转10转,调用一次中断程序,算出两次的长度差,即可算出卷径。
带材卷径计算出来后,即可通过程序计算出所需的卷取张力值,当卷径较小速度又较快时,卷取电机的速度有可能超过基速,电机则需要弱磁,此时电机的力矩会减小,为了获得恒定的力矩,需要从卷取机直流装置中读取电机的实时转速,计算出弱磁的倍数,按倍数加大卷取电机的电流给定,以补偿弱磁后的力矩减小。
4、系统特点和应用效果
4.1系统特点
A、将原来人工分别调各机架速度来保持机架间张力,改造为张力自动闭环工作方式,系统响应的快速性、稳定性得到了保证,消除了人为因素的影响;
B、 在300SPLC的编程中,应用OB35系统块的定时中断功能,对张力闭环采取内外环的控制方式,也就是说以3#机架为速度基准,先调用2#和3#PID环,以调节2#和4#机架的速度,在下一个循环周期再调用1#和4#PID环,以调节1#和5#机架的速度,这样就避免了调用1-4#PID环所容易引起的速度震荡,效果非常良好。
C、 张力的投入是在穿带过程中自动进行,从而在整个轧制过程中实现了张力控制,保证了产品的质量和成品率;
D、因为整个系统都应用了PROFIBUS通讯,省去了柜子之间以及和操作台之间的布线,大大降低了系统故障率,在主操作台设置了良好的人机画面,为客户检修故障提供了方便。
4.2 应用效果
采用上述控制技术,窄带钢五机架冷连轧机的机列速度从90m/min,**到240m/min,张力控制实现了自动闭环,带负荷试车一次成功,运行一年半时间,PLC和直流控制装置未出现任何故障,设备可靠性高,经济效益十分显著。