西门子6ES7222-1HD22-0XA0型号参数
纸机传动特性与变频器机械特性
造纸机传动属于恒转矩负载,要求电机采用恒转矩调速。要求变频器工作在恒转矩调速控制状态,应该选用恒转矩机械负载变频器。
有的公司对于恒转矩调速和恒功率调速采用不同型号的变频器,如西门子公司的ECO风机、水泵控制用变频器和MDV、6SE70恒转矩变频器。有的公司对于恒转矩调速和恒功率调速采用同一型号的变频器,对于同一台变频器采用不同的控制方式所接配的电机不同,变频器内部参数设置不同。如ABB公司ACS400、ACS600系列变频器。比如型号为ACS401-0030的变频器在恒转矩调速控制接配电机22Kw,在风机、水泵恒功率控制接配电机为30Kw。用户应该了解变频器的机械特性匹配。
2、频率分辨率对纸机传动性能的影响
频率分辨率是衡量变频器的重要指标。频率分辨率包含频率给定分辨率和频率控制分辨率。
1、频率给定分辨率指变频器的给定通道对输入信号的分辨率,一般指模拟输入通道AD的位数。对于通讯通道一般给定精度远远大于模拟通道,模拟给定通道若能满足要求,通讯通道是满足的。
一般纸机对传动调速的控制精度要求为0.1%,对于一台确定的造纸机从频率分辨率的角度来说,若能在低速满足给定控制精度,则在高速运行是没有问题的。下面我们举例说明:
设本台纸机在低速抄纸,变频器运行频率为10Hz,则要求给定精度为:10*0.1%=*Hz
要求变频器的频率分辨率必须能够小于*Hz。
设本台纸机在高速抄纸,变频器运行频率为50Hz,则要求给定精度为:
50*0.1%=0.05Hz
要求变频器的频率分辨率必须能够小于0.05Hz。
我们在选择传动系统时注意纸机低速时变频器能否满足控制精度的要求。而不必担心高速的给定精度。给定精度也可以通过变频器参数来进行调节,但缺点是在改变工作状态时需要重新调整参数。
如一台用于流浆箱控制的上浆泵变频器,其运行频率一般在30~50Hz之间,控制采用SR73A调节器,流浆箱液位无法稳定,上浆量忽大忽小,变频器始终调节不能稳定。原因变频器设定分辨率不够。给定忽大忽小,1mA对应2.5Hz。我们可以调节参数,变频器的小给定为30Hz,即给定0mA对应30Hz,给定20mA对应50Hz,这样1mA对应1Hz,给定频率分辨率提高了2.5倍。
2、频率控制分辨率指变频器的输出小分辨率,通常说变频器是无级调速是的。变频器有它的小分辨率,每次调速频率的小变化。现在变频器的小分辨率一般为*Hz。用户在选择变频器时应该注意频率分辨率是否能满足设备需要
6ES7518-4AP00-0AB0详细说明
西门子变频器MM430面板基本操作方法
西门子变频器MM430系列是西门子变频器MM4系列中经济性适中的一款产品,用户可以配置操作面板来实现对它的快速调试,在调试过程中,用户需要掌握常用参数的用法,以便可以快速准确的对设备进行调试,下面来介绍一下面板的基本操作方法:
西门子变频器MM430使用的面板是BOP-2面板,它的基本操作方法如下:
1. 按下绿色按键,功能为起动电动机。
2. 在电动机转动时按下上升键,可以增加频率,直到使电动机升速到50 Hz。
3. 在电动机达到50 Hz时按下下降键,电动机速度和它的显示值都会下降。
4. 按Hand键,则激活手动操作方式。
5. 按Auto键,则激活自动操作方式。
6. 用红色按键,功能为停止电动机。
西门子变频器有多个系列,其中MM系列中分为MM420,MM430,MM440,它们分别用在不同功率等级,不同类型负载,不同功能需求的场合。在使用过程中,如果变频器出现故障,会相应的显示故障代码,从而帮助用户进行故障原因的判断,以便更好的解决为。本文下面针对西门子变频器MM430的故障解决方式做一个介绍,供用户进行参考。
二、西门子变频器MM43*解决方法
下面以西门子变频器MM430为例,说明故障的解决方式,例如,MM430变频器报故障代码F0001:
1. 故障代码F0001的含义是过流,可能造成的原因有一下几点:
(1)负载(可能是电机)的功率大小和变频器的功率大小不一致;
(2)变频器和负载的接地不良,可能存在接地故障;
(3)负载与变频器之间的连接电缆长度太长;
(4)负载的连接电缆接地存在问题。
2. 如果出现故障代码F0001,可以按照如下的方式进行排查:
(1)检查变频器是否安装制动电阻,如果安装,将其拆下,并测量其是否对地有短路情况出现;
(2)检查负载的电缆连接线对地是否有短路现象;
(3)将变频器的参数回复到出厂默认状态,再重新上电,看故障是否还存在;
(4)如果故障复位后无法消除,可能是变频器本身的硬件故障,建议进行维修。
西门子变频器MM4系列在工业自动化控制领域有着广泛的应用,尤其是对于风机和泵类的负载控制效果理想,为企业提高了生产效率,降低了生产成本。其中西门子变频器MM430是该系列中的一种,它设计小巧,功能强大,扩展性强,用户通过配置操作面板可以完成参数设定,参数显示,快速调试,故障诊断等操作,为用户在调试过程中提高了效率。本文下面就来介绍一下西门子变频器MM430系列的常见故障,例如F0070,供用户在调试过程中进行参考。
二、西门子变频器MM43*分析
西门子变频器MM430的故障信息F0070表示PROFIBUS总线通讯故障,这个故障的原因和解决方法如下:
1. 故障原因
(1)干扰问题,包括PROFIBUS接头终端电阻设置不正确,安装布线不合理,通讯受到系统其它设备干扰等;
(2)硬件问题,包括DP通讯电缆故障或DP插头未连接紧,或PROFIBUS通讯模板与西门子变频器接触不良等;
(3)PROFIBUSDP主站出现异常,包括DP主站停机,通讯过程中DP主站发送无效控制字等;
2. 解决方法
当西门子变频器MM430提示F007*报警时,用户需检查如下几项:
(1)排查干扰问题,例如:检查DP主站和变频器是否接地正确,检查PROFIBUS通讯电缆屏蔽层是否接地正确,检查DP电缆连接头的终端电阻是否设置正确,检查DP电缆的通讯速率是否设定合适,检查DP电缆长度是否符合要求等。
(2)排查硬件问题,例如:检查DP电缆是否有断线情况,DP插头是否松动,PROFIBUS通讯模块是否正确安装等;
(3)主站出现异常时,用户需要检查DP主站状态,并检查控制字的设定;
西门子变频器控制电机方法
变频器与电机之间的影响
1、电动机绝缘强度问题
目前中小型变频器,不少是采用PWM的控制方式。他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。
2、电动机的效率和温升的问题
不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。拒资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加显着的是转子铜(铝)耗。因为异步电动机是以接近于基波频率所对应的同步转速旋转的,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。还需考虑因集肤效应所产生的附加铜耗。这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%--20%。
3、电动机对频繁启动、制动的适应能力
由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。
4、谐波电磁噪声与震动
普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。
5、低转速时的冷却问题
异步电动机的阻抗不尽理想,当电源频率较底时,电源中高次谐波所引起的损耗较大。普通异步电动机再转速降低时,冷却风量与转速的三次方成比例减小,致使电动机的低速冷却状况变坏,温升急剧增加,难以实现恒转矩输出
多重数据块是数据块的一种特殊形式,如在OB1中调用FB10,在FB10中又调用FB1和FB2,则只要FB10的背景数据块选择为多重背景数据块就可以了,FB1和FB2不需要建立背景数据块,其接口参数都保存在FB10的多重背景数据块中。建立多重背景数据块的方法是:在建立数据块只要在数据类型选项中选择“实例的DB”就可以了,见下例。下面通过一例简单介绍一下多重背景数据块使用的一些注意事项和方法。
例如,plc控制两台电机,且控制两台电机的接口参数均相同。一般的作法,我们可以编写功能块FB1控制两台电机,当控制不同的电机时,分别使用不同的背景数据块就可以控制不同的电机了(如台电机的控制参数保存在DB1中,第二台电机的控制参数保存在DB2中,我们可以在控制台电机调用FB1时以DB1为背景数据就可以了,第二台同样以DB2为背景数据块)。这样就需要使用两个背景数据,如果控制的电机台数更多,则会使用更多的数据块。使用多重背景数据块就是为了减少数据块的数量。
像这种情况,我们就可以利用多重背景数据块来减少数据块的使用量。拿本例来说,我们就可以在OB1中调用FB10,再在FB10中分别调用(每台电机各调用一次)FB1来控制两台电机的运转。对于每次调用,FB1都将它的数据存储在FB1的背景数据块DB1中。这样就无需再为FB1分配数据块,所有的功能块都指向FB10的数据块DB10。原理图如下:
我们需要先后插入一个功能块FB10和数据块DB10,DB10就为FB10的多重背景多重数据块。如下图:
需要在FB10中指定其所包含的背景数据块。方法如下:在FB10局部变量定义窗口中,在“STAT”变量区中(必须在此变量区中)为每台电机的控制取好名称后,数据类型选择FB
因为控制两台电机,需要在STAT中定义两个这样的变量。结果如下:
经过以上步骤,FB的背景数据块DB10中就完全包含了1#和2#电机所需的数据,如下图,其中地址2.0~8.0是台电机的接口区控制参数,10.0~16.0是第二台电机接口区控制参数。
这时,在FB10的指令列表中“多重实例”中就会出现已经添加的两个局部背景,如下图。
在程序中就可以分别调用这两个局部背景控制1号和2号电机了。程序如下:
这样,就可以在OB1中通过调用OB10就可以分别控制1#和2#电机了。如下图:
PID是比例、积分、微分的简称,PID控制的难点不是编程,而是控制器的参数整定。参数整定的关键是正确地理解各参数的物理意义,PID控制的原理可以用人对炉温的手动控制来理解。阅读本文不需要高深的数学知识。
1.比例控制
有经验的操作人员手动控制电加热炉的炉温,可以获得非常好的控制品质,PID控制与人工控制的控制策略有很多相似的地方。
下面介绍操作人员怎样用比例控制的思想来手动控制电加热炉的炉温。假设用热电偶检测炉温,用数字仪表显示温度值。在控制过程中,操作人员用眼睛读取炉温,并与炉温给定值比较,得到温度的误差值。用手操作电位器,调节加热的电流,使炉温保持在给定值附近。
操作人员知道炉温稳定在给定值时电位器的大致位置(我们将它称为位置L),并根据当时的温度误差值调整控制加热电流的电位器的转角。炉温小于给定值时,误差为正,在位置L的基础上顺时针增大电位器的转角,以增大加热的电流。炉温大于给定值时,误差为负,在位置L的基础上反时针减小电位器的转角,并令转角与位置L的差值与误差成正比。上述控制策略就是比例控制,即PID控制器输出中的比例部分与误差成正比。
闭环中存在着各种各样的延迟作用。例如调节电位器转角后,到温度上升到新的转角对应的稳态值时有较大的时间延迟。由于延迟因素的存在,调节电位器转角后不能马上看到调节的效果,闭环控制系统调节困难的主要原因是系统中的延迟作用。
比例控制的比例系数如果太小,即调节后的电位器转角与位置L的差值太小,调节的力度不够,使系统输出量变化缓慢,调节所需的总时间过长。比例系数如果过大,即调节后电位器转角与位置L的差值过大,调节力度太强,将造成调节过头,甚至使温度忽高忽低,来回震荡。
增大比例系数使系统反应灵敏,调节速度加快,并且可以减小稳态误差。比例系数过大会使超调量增大,振荡次数增加,调节时间加长,动态性能变坏,比例系数太大甚至会使闭环系统不稳定。
单纯的比例控制很难保证调节得恰到好处,完全消除误差。
2.积分控制
PID控制器中的积分对应于图1中误差曲线与坐标轴包围的面积(图中的灰色部分)。PID控制程序是周期性执行的,执行的周期称为采样周期。计算机的程序用图1中各矩形面积之和来近似**的积分,图中的TS就是采样周期。
图1 积分运算示意图
每次PID运算时,在原来的积分值的基础上,增加一个与当前的误差值ev(n)成正比的微小部分。误差为负值时,积分的增量为负。
手动调节温度时,积分控制相当于根据当时的误差值,周期性地微调电位器的角度,每次调节的角度增量值与当时的误差值成正比。温度低于设定值时误差为正,积分项增大,使加热电流逐渐增大,积分项减小。只要误差不为零,控制器的输出就会因为积分作用而不断变化。积分调节的“大方向”是正确的,积分项有减小误差的作用。一直要到系统处于稳定状态,这时误差恒为零,比例部分和微分部分均为零,积分部分才不再变化,并且刚好等于稳态时需要的控制器的输出值,对应于上述温度控制系统中电位器转角的位置L。积分部分的作用是消除稳态误差,提高控制精度,积分作用一般是必须的。
PID控制器输出中的积分部分与误差的积分成正比。因为积分时间TI在积分项的分母中,TI越小,积分项变化的速度越快,积分作用越强。
3.PI控制
控制器输出中的积分项与当前的误差值和过去历次误差值的累加值成正比,积分作用本身具有严重的滞后特性,对系统的稳定性不利。如果积分项的系数设置得不好,其负面作用很难通过积分作用本身迅速地修正。而比例项没有延迟,只要误差一出现,比例部分就会立即起作用。积分作用很少单独使用,它一般与比例和微分联合使用,组成PI或PID控制器。
PI和PID控制器既克服了单纯的比例调节有稳态误差的缺点,又避免了单纯的积分调节响应慢、动态性能不好的缺点,被广泛使用。
如果控制器有积分作用(例如采用PI或PID控制),积分能消除阶跃输入的稳态误差,这时可以将比例系数调得小一些。
如果积分作用太强(即积分时间太小),相当于每次微调电位器的角度值过大,其累积的作用会使系统输出的动态性能变差,超调量增大,甚至使系统不稳定。积分作用太弱(即积分时间太大),则消除稳态误差的速度太慢,积分时间的值应取得适中。
4.微分作用
误差的微分就是误差的变化速率,误差变化越快,其微分值越大。误差增大时,其微分为正;误差减小时,其微分为负。控制器输出量的微分部分与误差的微分成正比,反映了被控量变化的趋势。
有经验的操作人员在温度上升过快,尚未达到设定值时,根据温度变化的趋势,预感到温度将会超过设定值,出现超调。于是调节电位器的转角,提前减小加热的电流。这相当于士兵射击远方的移动目标时,考虑到子弹运动的时间,需要一定的提前量一样。
图2 阶跃响应曲线
图2中的c (∞)为被控量c (t)的稳态值或被控量的期望值,误差e(t) =c (∞) - c (t)。在图2中启动过程的上升阶段,当时,被控量尚未超过其稳态值。因为误差e(t)不断减小,误差的微分和控制器输出的微分部分为负值,减小了控制器的输出量,相当于提前给出了制动作用,以阻碍被控量的上升,可以减少超调量。微分控制具有超前和预测的特性,在超调尚未出现之前,就能提前给出控制作用。
闭环控制系统的振荡甚至不稳定的根本原因在于有较大的滞后因素。因为微分项能预测误差变化的趋势,这种“超前”的作用可以抵消滞后因素的影响。适当的微分控制作用可以使超调量减小,增加系统的稳定性。
对于有较大的滞后特性的被控对象,如果PI控制的效果不理想,可以考虑增加微分控制,以改善系统在调节过程中的动态特性。如果将微分时间设置为0,微分部分将不起作用。
微分时间与微分作用的强弱成正比,微分时间越大,微分作用越强。如果微分时间太大,在误差快速变化时,响应曲线上可能会出现“毛刺”。
微分控制的缺点是对干扰噪声敏感,使系统抑制干扰的能力降低。为此可在微分部分增加惯性滤波环节。
5.采样周期
PID控制程序是周期性执行的,执行的周期称为采样周期。采样周期越小,采样值越能反映模拟量的变化情况。太小会增加CPU的运算工作量,相邻两次采样的差值几乎没有什么变化,将使PID控制器输出的微分部分接近为零,也不宜将采样周期取得过小。
应保证在被控量迅速变化时(例如启动过程中的上升阶段),能有足够多的采样点数,不致因为采样点数过少而丢失被采集的模拟量中的重要信息。
6.PID参数的调整方法
在整定PID控制器参数时,可以根据控制器的参数与系统动态性能和稳态性能之间的定性关系,用实验的方法来调节控制器的参数。有经验的调试人员一般可以较快地得到较为满意的调试结果。在调试中重要的问题是在系统性能不能令人满意时,知道应该调节哪一个参数,该参数应该增大还是减小。
为了减少需要整定的参数,可以采用PI控制器。为了保证系统的安全,在调试开始时应设置比较保守的参数,例如比例系数不要太大,积分时间不要太小,以避免出现系统不稳定或超调量过大的异常情况。给出一个阶跃给定信号,根据被控量的输出波形可以获得系统性能的信息,例如超调量和调节时间。应根据PID参数与系统性能的关系,反复调节PID的参数。
如果阶跃响应的超调量太大,经过多次振荡才能稳定或者根本不稳定,应减小比例系数、增大积分时间。如果阶跃响应没有超调量,被控量上升过于缓慢,过渡过程时间太长,应按的方向调整参数。
如果消除误差的速度较慢,可以适当减小积分时间,增强积分作用。
反复调节比例系数和积分时间,如果超调量仍然较大,可以加入微分控制,微分时间从0逐渐增大,反复调节控制器的比例、积分和微分部分的参数。
PID参数的调试是一个综合的、各参数互相影响的过程,实际调试过程中的多次尝试是非常重要的,也是必须的。
7.实验验证
实验使用S7-300 plc的PID控制功能块FB41,被控对象由两个串联的惯性环节组成,其时间常数分别为2s和5s,比例系数为3.0。用人机界面的趋势图显示给定曲线和闭环输出量的响应曲线。