6ES7222-1BD22-0XA0质量保障

2024-05-08 07:10 180.174.45.72 1次
发布企业
浔之漫智控技术-西门子PLC代理商商铺
认证
资质核验:
已通过营业执照认证
入驻顺企:
2
主体名称:
浔之漫智控技术(上海)有限公司
组织机构代码:
91310117MA1J3R698D
报价
请来电询价
关键词
西门子代理商,西门子模块代理商,西门子一级代理商,西门子中国代理商
所在地
上海市松江区石湖荡镇塔汇路755弄29号1幢一层A区213室
手机
15221406036
经理
聂航  请说明来自顺企网,优惠更多
请卖家联系我
15221406036

产品详细介绍

6ES7222-1BD22-0XA0质量保障

本文就某印*机械生产厂家印*机目前存在的问题,提出了基于OMRON系统的印*机整体解决方案,并详细的分析了原系统的缺点和改造后的系统的优点。实践证明,印*机采用OMRON系统改造后稳定可靠,成本低廉,先进实用,具有极高的
市场推广价值!

关键词:可编程控制器(PLC),变频器,伺服系统,触摸屏,旋转编码器,无协议通讯,功能块等。

1.引言

*据印*机是印*机行业中一种常用的机型,对机器的控制精度,伺服的响应时间都有很高的要求,以前主要靠进口,成本投资比较大。近年来,随着可编程控制器(PLC)在通讯功能和高速计数以及脉冲输出功能的日益完善,性能日益**,使得PLC+伺服+变频器+触摸屏组成的整个系统在印*机上应用成为可能。国内众多的厂家都相继开发出各自的*据印*机械,繁荣了国内的印*机市场,有力的抵制了国外品牌的入侵,巩固了国产印*机的市场地位,并在性能上日益得到完善。烟台某印*机械生产厂家委托上海某厂家开发的基于西门子S7-200可编程控制器+松下伺服+海泰克触摸屏+台安变频器的系统解决方案以其低廉的成本,稳定的系统配置赢得了客户的青睐,取得了良好的业绩,但也存在诸多的问题,如系统调试周期时间长,印*速度低,改变转速必须停机断电等缺陷,在此不一一细表,后文有叙。应客户要求,经过本人分析探讨,后确立了基于OMRON系统的整体解决方案,以减少和改进原系统的缺陷,**机器的性能。

2.控制过程及存在问题
2.1 原先*据印*机的控制过程
原先*据印*机的控制过程是这样的:由一台主电机拖动印*机的两个滚筒(两个滚筒可印*两种颜色)单方向旋转,主电机采用变频器进行宽范围调速,主电机轴上装有旋转编码器用来测算主轴电机的速度;由一个电磁铁来控制滚筒的离压和合压。在合压情况下,滚筒压紧*据进行印*;采用伺服控制进给纸速度,以便使伺服电机的线速度和主轴电机的线速度保持一致,由于是两个滚筒,它们之间可能存在速度上的差别,采用两套伺服。当伺服电机的速度大于主轴电机的速度时,合压后将会在滚筒和伺服电机之间堆纸,当伺服电机的速度小于主轴电机的速度时,合压后纸张将被扯断,以上两种情况在系统正常工作过程中都是不允许的,即伺服电机的速度必须保持和主轴电机高度一致。系统工作之前启动变频器,待变频器速度稳定后按下印*按钮,伺服电机开始旋转,此时合压电磁阀不合压,等旋转编码器的个Z相信号到来,立即合压,开始印*。印*过程如下:在触摸屏上设定纸张的尺寸,在每一个Z相信号到来之后,伺服立即正向旋转设定尺寸+2英寸的距离,随后反向旋转2英寸,以保证纸张长度和张力平衡。要想停机,按下停止按钮,本张纸走完立即停止伺服电机的运转。
还要求:一、在走纸过程中突然停电,来电后要能继续走完这张纸。二、由于是印*机械,对印*精度要求很高,两张纸的印*起点必须一致,即PLC必须用中断来控制伺服系统,否则可导致两张纸的印*起点不同,原因是PLC循环扫描时间造成的。三、系统还要求能在走纸过程中(伺服系统运转中)能实现纸张的前后移动,即稍微变化一下纸张的位置,以使印*更完美。选择伺服系统电机的线数:由于印*的纸张可以设定为浮点数,单位是英寸,为保证精度,必须固定伺服系统,即固定伺服系统的每转给定脉冲数,通过比较判断,我确定伺服系统每转脉冲数为4000个,原因如下:因为伺服系统每转是4英寸,0.001英寸则是1个脉冲,在每转设定4000个脉冲时,系统能**到0.001英寸,如设定为0.0005,则每进给一张纸差0.5个脉冲,会严重影响纸张的印*精度,走纸越多差别越大。如设定每转脉冲为10000,虽可以更**,但PLC需要更高的脉冲输出频率。由于固定了伺服系统的线数,要想**系统的速度,只能**PLC脉冲输出的频率,否则纸张设定精度就会变低,这是不允许的。
整个系统要有手动、自动、点动以及报警功能,要便于维护,触摸屏界面要求美观实用。
2.2 西门子S7-200 PLC主要存在的问题
原先采用西门子S7-200 PLC主要存在以下问题:(1)S7-200PLC脉冲输出速率低,大频率不到30kHz,使得印*机的效率低,每小时只能达到五六千张。因为西门子PLC速度太低,导致伺服系统不能有更高的分辨率(松下伺服为每转2000个脉冲),导致纸张印*精度只有0.005,比改造后系统的高设定纸张精度差了5倍。(2)在正常印*过程中,调整变频器速度必须停机,再改变变频器的速度,断电重新上电后方可正常运行。(3)系统速度计算误差较大,使得单机调试时间拉长,影响设备的出厂时间。(4)停机不够人性化,即停机之前印*的那一张因为可能没有进给完成造成纸张废掉。
3.改造选型
接手这个项目后,立即展开工作,在分析了原系统的特点并且为以后升级留下一定的余地的前提下,决定选用OMRON高性价比的CP1H-X40CDT机型。该PLC配备了40个I/O点,其中24输入,16点输出,拥有2路双向100kHz的高速计数器输入,2路双向30KHZ的高速计数器输入,4路双向100kHz的高速脉冲输出,不仅能满足当前伺服电机的要求,还为以后四色印*机的开发留下了足够的空间,使后续开发工作变得简单。
(1)确立了PLC的型号后,根据主轴电机的要求选择伺服系统,比较了多家的伺服系统,后选择了OMRON的SMARTSTEPW伺服系统。该伺服系统简便易调,特别是在线自动调整功能,方便调试,重要的是启动时间短,响应快。
(2)主轴电机由于需要调速,是三相异步电动机,从节能和可靠及经济性说只能通过变频调速,选用OMRON的3G3MV系列1.5kW变频器。该变频器具有通讯功能,支持OMRON的功能块和MODBUS-RTU功能,具有PID调节功能,性价比比较高。
(3)印*机原先用按钮指示灯和触摸屏进行操作,直观性差,不美观,应用户要求,我们为其配备了OMRON的NT5Z的黑白触摸屏作为人机界面。这样,基于OMRON的PLC(CP1H)+伺服(W)+触摸屏(NT5Z)+变频器(3G3MV)的整个系统解决方案出台。
4.系统特点
OMRON的这个系统解决方案克服了西门子S7-200的上述缺点:
(1)OMRONPLC的脉冲输出速率达到100kHz,速度是西门子S7-200的10倍,完全满足了用户提速的要求,极大的**了印*机的速度;
(2)OMRON的变频调速是用PLC功能块通过通讯做的,不需要停机后再开机,解决了上述的第二个问题。也可以通过MODBUS-RTU功能,亦可方便的进行通信;
(3)整个系统全部采用OMRON的控制产品,调试简便,硬件和软件的兼容性好; (4)OMRONPLC的高速计数器当前值的读取是直接读取的,在程序中直接利用高速计数器PV中断编程,来控制纸张的进给,完全可以准确定位并在按下停机按钮后走完后一张再停机,使设计更加人性化;
(5)在线纸张自动调整功能的实现。因为整个走纸过程是先正转,并且多转2英寸,可以通过减少反转的脉冲个数实现在线位置调整,每次反转后,都把反转尺寸重新设定会原值。
5.系统结构、电路图及编程
(1)系统利用CP1H作为主控制器,CP1H上面安装两个通讯接口,一个是RS232,另一个是RS485,PLC通过232端口与触摸屏进行通讯,通过485与变频器进行通讯,PLC上还有一个USB接口,用作编程和监控用,PLC的脉冲输出直接给伺服驱动器,控制伺服电机。


(2)地址分配
地址分配如附表所示,电路图省略。
说明:程序中用到三路高速计数器,高速计数器0用来测量主轴的速度,高速计数器1用来测量主轴的Z相信号并产生中断的,高速计数器2用来显示主轴的位置,用来调整机械滚筒的位置,为厂家用。其他文章中没有介绍的信号和输出为一般开关量,比较简单,不再进行描述。附表地址分配表


(3)PLC编程
PLC编程包括:速度转换、功能块通讯、PLC端口的设置:PLC端口1设为NTbbbb、以便与触摸屏通讯,端口2设为串行通讯,以与变频器通讯。图2示出PLC编程界面,图3示出速度转换梯形图,图4示出通讯梯形图。


6.调试概要
印*机调试主要是进给纸速度调试以及触摸屏各种显示信息的调试,理论上计算的速度并不一定完全适合现实生产,需要对速度进行现场调节,以便使机器达到佳性能。PLC方面的主要调试是功能块的通讯,使其能够满足实时性的要求。
7.结束语
实践证明:采用OMRONPLC+触摸屏+伺服系统+变频器的印*机系统解决方案是完全可行的,该方案造价低廉,系统稳定可靠,界面美观友好,功能齐全,通过触摸屏的操作即可在生产过程中加减速,以及查看报警,便于维护设备,增加了系统的灵活性,该系统开发成功后,受到了客户的,具有较大的市场推广价值。

泵站作为水利建设和管理工程的主要设施,担负着城市排水防涝、引水供水的重要任务。从20世纪90年代以来,随着IT技术的进步以及水利事业的蓬勃发展,水利行业泵站自动化的水平不断**,泵站技术和管理水平大大**,向国外无人化泵站监控管理发展,减人增效成果显著。在这个过程中,泵站计算机监控系统起着至关重要的作用。现代的监控系统能够实现全泵站的数据集中监控、主辅设备自动控制、远方遥控和遥调、信息远传等功能,是泵站安全、可靠和经济运行的可靠保证。

   借助全新的信息技术,水利自动化系统无论在结构上还是在功能上,进入了一个全新发展阶段。水利自动化需要适应新的市场形势,发展成为一个集计算机、控制、通信、网络、电力电子为一体的综合系统,具备的硬件结构,开放的软件平台和强大的应用系统,保证泵站自动化实现全天候不间断运行,能够轻松应对未来业务发展需要。

   基于南大傲拓公司NA系列PLC的泵站自动化解决方案,成为水利行业泵站计算机监控系统的产品之一。

如何以强大PLC打造计算机监控系统

   目前,泵站计算机监控系统采用开放的分层分布式网络结构,由站控级和现地控制单元组成。系统级设备大多采用以太网Ethernet或光纤环网FDDI等通用网络设备,连接高性能的微机、工作站、服务器,在被控设备现场则较多地采用PLC或智能现地控制单元,再通过现场总线与基础层的智能I/O设备、智能仪表、远程I/O等相连接构成现地控制子系统,与厂级系统结合形成整个控制系统。

   随着安全生产、计算机技术等功能及技术的扩展,计算机监控系统对现地控制子系统核心控制器的能力也提出了更高的要求。在现地控制级核心控制器的选择上,功能强大的PLC成为大多数系统的。目前通常使用的国外通用型PLC存在各种问题:如无专用SOE模件;开出回路简单,在强干扰下容易误动;通信扩展能力差;调试过程不方便,不直观等。新一代的PLC必须考虑到行业特点,并能够拥有比国外通用型PLC更强大的功能。

   泵站计算机监控系统需要PLC具有强大的可靠性、性、扩展性,这样才能保证水利行业在计算机监控系统方面的投资不仅能够满足现实和未来需要,投资能够得到全面保护。

基于NA400 PLC的解决方案让泵站自动化更加强大可靠。

   NA400可编程控制器作为公司NA系列可编程控制器家族中的重要成员,在开发研制过程中采用了工业控制领域的一系列新成果和新思想,了国外PLC的成功之处,瞄准当今PLC的新发展趋势,生产过程采用先进的生产加工工艺和精制的外观设计,相信会给您带来耳目一新的感觉。

实现无人值班,减员增效

   现在,基于NA400系列PLC的计算机监控系统为泵站提供了灵活、强大、可靠的计算机监控系统,系统功能齐全,软件和硬件标准化程度高,满足了泵站“无人值班”(少人值守)的要求,实现减员增效,能够取得良好的成效,可广泛地应用于各类大中小型水利自动化工程。

典型配置

   某泵站设计**25立方米/秒。安装潜水轴流泵6台,电机为异步电机,单机功率315kW,采用直接启动方式,总装机容量1890kW,电压等级为10kV。

   网络采用单以太网,星形结构,PLC与上位机通过以太网连接,网络设备可选用交换机,系统结构图如下:

 压滤机广泛适用于石油、化工、冶金、环保、洗煤、尾矿污泥处理、钼矿、制药、制糖、淀粉、食用油、燃料、陶瓷、造纸及各种污水处理等行业做固液体分离。


基于NA200系列PLC的压滤机控制能够自动完成压紧,退回,拉板,清洗,震打,自动供料,卸料等功能,可以通过计算机联网,实现远程操作,也可以通过触摸屏实现当地人机界面。采用NA200PLC控制的压滤机具有性能稳定、人机界面友好、维护方便、效率高等特点

介绍了CCD驱动电路的4种常用方式及其优缺点,详细阐述了基于高速超微型单片机C8051F3(x)的CCD驱动电路设计,包括内部CCD驱动时序和外部输出同步信号的产生、像素输出电压的简单处理以及通过RS232接口在线调整CCD驱动频率等。系统克服了目前单片机方式在CCD驱动应用中存在的一些缺点。
关键词:C805lF300 CCD TCDl206可编程计数器阵列

  CCD作为一种光电转换器件,由于其具有精度高、分辨率好、性能稳定等特点,目前广泛应用于图像传感和非接触式测量领域。在CCD应用技术中,关键的两个问题是CCD驱动时序的产生和CCD输出信号的处理。对于CCD输出信号,可以根据CCD像素频率和输出信号幅值来选择合适的片外或片内模数转换器;而对于CCD驱动时序,则有几类常用的产生方法。
1 常用的CCD驱动时序产生方法
CCD厂家众多,型号各异,其驱动时序的产生方法也多种多样,一般有以下4种:
(1)数字电路驱动方法
这种方法是利用数字门电路及时序电路直接构建驱动时序电路,其核心是一个时钟发生器和几路时钟分频器,各分频器对同一时钟进行分频以产生所需的各路脉冲。该方法的特点是可以获得稳定的高速驱动脉冲,但逻辑设计和调试比较复杂,所用集成芯片较多,无法在线调整驱动频率。
(2)EPROM驱动方法
这种驱动电路一般在EPROM中事先存放所有的CCD时序信号数据,并由计数电路产生EPROM的地址使之输出相应的驱动时序。该方法结构相对简单、运行可靠,但仍需地址产生硬件电路,所需EPR0M容量较大,同样也无法在线调整驱动频率。
(3)微处理器驱动方法
这种方法利用单片机或DSP通过程序直接在I/O口上输出所需的各路驱动脉冲,硬件简单、调试方便、可在线调整驱动频率。但由于是依靠程序来产生时序,如果程序设计不合理,会造成时序不均匀;往往会造成微处理器资源浪费;通常驱动频率不高,除非采用高速微处理器。
(4)可编程逻辑器件驱动方法
这种设计方法就是利用CPLD、FPGA等可编程逻辑器件来产生时序驱动信号,硬件简单、调试方便、可靠性好,可以得到较高的驱动频率。同样也可在线调整驱动频率。电路设计完成以后,如果想更改驱动时序,只需将器件内部逻辑重新编程即可。
以上4类方法中目前常用的是微处理器驱动方法(通常又称为“软件驱动”法)和可编程逻辑器件驱动方法(又称“硬件驱动”法)。由于在CCD应用系统中,一般都要用到微处理器,若采用“软件驱动”法,则无需增加硬件,在电路结构上为简单,系统成本也低,只要能克服其驱动频率低、资源浪费多、时序不均匀等缺点,无疑是一种理想的驱动方法。本文结合Toshiba公司的TCDl206线阵CCD,介绍如何利用C8051F300来产生其要求的驱动时序。
2 硬件设计
如图1所示,虚线框内的电路构成CCD驱动处理板。安装在CCD相机内部。系统处理器采用美国Silabs公司推出的超微型高速8位单片机C8051F300,CCD采用Toshiba公司的高灵敏度线阵CCD图像传感器芯片TCDl206,双电压供电的总线驱动器LVC4245解决了单片机(3.3V)和CCD(5V)二者之间的电平匹配。CCD驱动脉冲由C8051F300提供,其像素输出电压经高速运放AD8031处理,由U0引脚引到外部,向外部提供像素同步信号PS和行同步信号FS(由PO.6、P0.7经LVT245总线驱动器所得)。

按此在新窗口浏览图片


U0、PS、FS这3个信号供外部处理器采集CCD像元输出。有时可能要在线调整CCD的某些参数(如驱动频率、积分时间等),为此设置了RS232串口与外部处理器进行通信。
2.1TCD1206
TCD1206是Toshiba公司生产的高灵敏度二相双沟道线阵CCD图像传感器芯片,2160个有效像素点,像素频率为0_3~2MHz(本系统为1.MHz),其驱动时序波形如图2所示。

按此在新窗口浏览图片


图2中:φl、φ2为像素脉冲,两者互为反相,RS为复位脉冲.SH为光积分脉冲,OS为像元输出,DOS为像元补偿输出。当SH为低电平时,在φ1、φ2交变后,OS输出像元电压信号,随后发RS脉冲,以便去掉信号输出缓冲中的残余电荷,为下一点像素电压输出做准备。各脉冲具体时序关系可参见参考文献。
2.2C8051F300
C8051F系列单片机其CPU内核采用流水线结构,机器周期由标准8051的12个系统时钟周期降为1个系统时钟周期,使其执行速度在相同晶振下是标准8051的12倍,处理能力大大**,大部分C8051F单片机的峰值处理速度是25M1PS,而C8051F12X、13X系列的峰值处理速度则达到了100MIPS。C8051F系列单片机功能齐全,性能优异,其整体性能超过很多目前的16位单片机,甚至在一些低端应用中可取代低速的16位DSP器件,目前在仪器仪表、工业控制、嵌入式产品等领域日益得到广泛应用。
C8051F300是C8051F系列中的超微型高速混合系统级单片机,是目前世界上小封装的8位单片机,11个引脚,封装在面积为3ram×3mm的芯片上。内部集成了3个16位定时器、3个可编程捕捉,比较模块、1个UART串口、1个I2C串口、1个8通道500KSPS采样率的8位ADC、8KB的Flash程序存储器、256B的内部RAM、8个I/O口,系统内部振荡时钟为24.5MHz(±2%)、大峰值处理速度可达25MIPS。
由图2可见,在4路CCD驱动脉冲中,对时序要求严格的是φ1、φ2和RS,为此,利用C8051F300的可编程计数器阵列模块的2个可编程捕捉,比较模块输出口(CEXO、CEXl)自动产生φl、φ2,以CEXO为基准点,再产生RS和其他脉冲。
2.3可编程计数器阵列(PCA)
PCA提供增强的定时器功能,由一个专用的16位计数器,定时器和3个16位捕捉,比较模块组成,每个捕捉/比较模块有其自己的I/O口(CEXn,n=l,2,3)。计数器,定时器的时基信号可在6个时钟源中选择:系统时钟、系统时钟/4、系统时钟/12、外部振荡器时钟/8、定时器0溢出或ECI输入引脚上的外部时钟信号。而每个捕捉,比较模块都可以被独立配置为6种工作方式之一:边沿触发捕捉、软件定时器、高速输出、频率输出、8位PWM和16位PWM。
由于φ1、φ2(对应CEXO、CEXl)是占空比为50%的方波,捕捉/比较模块0、1工作在频率输出方式,这种工作方式可在CEXn引脚产生可编程频率的方波,其工作原理图如图3所示。当PCA计数器低字节与捕捉,比较寄存器低字节相同即PCAOL=PCAOCPLn时,称为“比较匹配”,此时CEXn引脚电平翻转,捕捉/比较寄存器高字节即PCAOL与PCAOCPHn相加后的结果送入PCAOCPLn,以便下一次比较用。显然,只要改变PCAOCPHn的值,便可在CEXn引脚上得到频率可调、占空比为50%的方渡,其频率由下式定义:
fCEXn=fPCA/(2×PCAOCPHn),
其中:fPCA是PCA计数器,定时器的时钟频率。

按此在新窗口浏览图片


3软件设计
为了得到时序严格的ccD驱动脉冲和外部输出同步脉冲,程序不是靠软件延时来达到合适宽度的脉冲,而是利用PCA模块本身强大的功能,用中断程序来完成各路脉冲,即开放捕捉,比较模块0的“比较匹配”中断作为同步信号,并以此为基准点完成相应脉冲的每一次变化。
3.1CCD驱动脉冲
PCA的2个捕捉,比较模块工作方式设置为如图4所示的频率输出方式。其输出引脚CEX0、CEXl的初始电平设置为1、0,当PCAOL与PCAOCPLn(n=O、1)“比较匹配”时,电平翻转,由此形成反相的φ1、φ2脉冲;而HS脉冲的产生,则是在捕捉/比较模块O的“比较匹配”中断程序中,即先对RS(P0.2)置l,随后清零,这样就可产生80ns的RS脉冲(SETBbit指令周期为2个时钟周期,即80ns)。

按此在新窗口浏览图片


3.2外部输出同步脉冲及像素电压
行同步信号FS、像素同步信号IX5均设置为低电平有效,CCD时序中φl、φ2交变后直到像素电压输出有一个延迟时间tdly(典型值为150ns),但由于捕捉/比较模块0“比较匹配”时,一方面CEXO(φ1)翻转,一方面向CPU请求中断,而中断响应时间需5个时钟周期(200ns),显然大于tdly,进入中断后,不必考虑tdly,可直接对PS(P0.6)清零,待合适的时间后再将PS置1.这样就产生一个低电平有效的PS信号。
CCD像素输出OS、DOS经高速运放AD8031处理后,其外部输出像素电压Uo时序如图4所示。
针对单片机在CCD时序驱动应用中存在的优缺点.选用新型高速C8051F单片机,实现CCD驱动电路,克服了单片机驱动方式存在的驱动频率低、系统资源浪费、时序间隔不均匀等缺点;具有硬件结构简单、调试编程方便、可在线调整驱动频率等优点。本文所介绍的驱动电路己应用于TCDl206,超微型的封装结构使其很容易与其他芯片一起嵌入在CCD相机中,系统运行可靠。


所属分类:中国电工电气网 / PLC
关于浔之漫智控技术-西门子PLC代理商商铺首页 | 更多产品 | 联系方式 | 黄页介绍
成立日期2019年09月10日
法定代表人袁宜男
注册资本500
主营产品西门子PLC模块,变频器,触摸屏,交换机
经营范围从事智能科技、自动化科技、机电领域内的技术开发、技术转让、技术咨询、技术服务,工业自动化设备安装,工业自动化控制设备、电气设备、机申设备、电子产品、五金产品、金属材料、仪器仪表、橡塑制品销售,商务信息咨询,软件开发,建筑装修装饰建设工程专业施工,建筑安装工程(除特种设备),机械设备租赁(不得从事金融租赁),物业管理。工业自动化设备加工、销售。
公司简介本公司销售的一律为原装正品,假一罚十,可签正规的产品购销合同,可开增值税发票,税点另外算,24小时销售热线:15221406036本公司销售的一律为原装正品假一罚十可签正规的产品购销合同可开增值税发票税点另外算24小时销售热线15221406036西门子触摸屏代理商,西门子一级代理商,西门子中国授权总代理----浔之漫智控技术(上海)有限公司本公司专业经销合信/CO-TRUST科思创西门子PLC; ...
公司新闻
顺企网 | 公司 | 黄页 | 产品 | 采购 | 资讯 | 免费注册 轻松建站
免责声明:本站信息由企业自行发布,本站完全免费,交易请核实资质,谨防诈骗,如有侵权请联系我们   法律声明  联系顺企网
© 11467.com 顺企网 版权所有
ICP备案: 粤B2-20160116 / 粤ICP备12079258号 / 粤公网安备 44030702000007号 / 互联网药品信息许可证:(粤)—经营性—2023—0112