西门子模块6ES7253-1AA22-0XA0质量保障
在新开发的产品中有一个型号为Q7的长条铝基台,要在上面加工两个φ3.7×1.65的平底盲孔,由于要求精度高,批量大,故无法用传统的钻模在钻床上加工,也很难在传统铣床上面加工,能加工效率也很低,并且设备损耗和电力损耗也很大。此工件的加工有着非常广泛的代表性,生产的很多产品有着类似的要求,为此,我们设计制做了一台用于此类产品加工的设备——通用型数控钻铣床。
一、系统概述
控制部分采用PLC,并配以人机界面进行程序参数修改、设定,以及运行状态显示监控,可编程设置人机界面的内容。三轴均为全数字交流伺服系统,各轴伺服电机通过连轴器带动滚珠丝杠,以移动配有直线导轨的工作台和主轴铣头,其定位准确,速度快。主轴铣头由变频器控制,根据刀具及工件和进给量,来设置主轴合理的转速,并在程序中设定它的启动停止。各轴均设二端极限传感器和原点传感器,冷却和润滑也都有异常检测,在报警灯和人机界面处显示报警信息。为便于调试和检修,各项操作均设手动功能,如手动各轴快慢移动、主轴高低速旋转、切削液及润滑开关等。此机床整体虽为半闭环控制,只要选件、装配、程序编制及操作合理,精度和稳定性还是能满足使用要求的。
二、硬件配置
PLC选用永宏的FBS-40MCT,该型机具有较高的性价比,体积小,功能强,24点输入,其中有16点高速计数器,频率可达120K,16点输出,其中有4轴步进或伺服输出整合在里面,输出频率可达120K,使应用起来非常方便,接线简捷。编程软件WinProladder有梯形图大师之称,易学易用且功能强大,编辑、监视、除错等操作非常顺手,按键、鼠标并用及在线即时指令功能查询与操作指引,使编辑、输入效率倍增。
接点分配:取各轴伺服电机的Z相信号作原点开关,要分接在几个高速输入点上,用中断进行机床原点复归,其余限位开关、操作开关、液位检知等常规接点可按顺序依次接入。X、Y、Z三轴伺服电机连在前3轴伺服输出点,主轴高低速、冷却、报警等接在其余输出点上。
X、Y、Z3轴伺服系统均选用相同的,和利时的ES系列全数字交流伺服驱动器0040E-CBCEE-02,和60系列小惯量的伺服电机60CB040C-2DE6E。该伺服系统功能比较完善,如能耗制动、电子齿轮、自动加减速等,具备多种脉冲串输入,保护功能也比较完备,有欠压、过压、过流、过载、堵转、失速、位置超差、编码器异常等。在此设备中按集电极开路驱动方式连接至PLC,高脉冲输入频率为200K,伺服ON、Z相信号等也做相应连接。
变频器选用富凌的DZB70B0015L2A,规格为单相1500W,400Hz,有多步速供编辑使用。由于正常使用时不频繁变速,故速度调节设定不引出,只在变频器操作面板上调节,设定两个速度,高速用于加工,低速用于对刀。调节相关参数与主轴匹配,如基频、基压、运行频率上限、载频等,并改动相应跳线。
主轴没有采用传统方式,而是根据加工需要,采用了雕刻机用的电主轴,安阳莱必泰的ADX80-24Z/1型,其体积小、噪音低,直径只有80mm,这样使整个主轴箱便于整体密封,可有效地防止加工中的碎屑飞溅到Z轴的丝杠和导轨上造成损害,也使主轴箱外表显得美观。它的高转速为24000转/分,使正常工作转速6000-14000转有一个合适的余量范围。 人机界面选用人机电子的通用可编程文本显示器MD204L,它可以以文字或指示灯等形式监视、修改PLC内部寄存器或继电器的数值及状态。
三、软件设计
开机后先检测手动开关是否有效,若手动开关有效即利用各手动控制开关执行手动操作的项目。若手动开关无效,则启动原点复归程序,各轴进行机床原点复归,先回Z轴再回其它两轴,当所有轴都原点复归成功后才能进行到下一步。若刀具和工装夹具、工件程序均没有变动,可复位到加工预备状态而不进行对刀,若需对刀,则打开对刀开关启动对刀程序,3轴分别对刀,即找工件原点,利用手动各轴移动开关快慢移动各轴,使工件的三个面分别碰触低速旋转的刀具,刚好碰上为止。对好后,按对刀OK确认,再输入刀补,经过程序处理,即形成工件原点也就是编程0点,编程时根据此0点按照图纸计算刀具路径,可使操作者思路清晰,编辑运算简单。操作者编辑的是用户程序,可以编辑刀具轨迹,就是各轴移动坐标,还有移动速度、循环加工时的循环次数等。编好程序后或使用当前程序时,即复位到预备状态:各轴移动到初始位—一个合适的位置,装卸工件方便、不易碰触刀具时,装上工件,按启动即可开始加工,主轴运转,冷却液开,各轴按程序设定坐标移动。当加工结束时,机床复位,即各轴又移动到初始位,主轴停,冷却关,这时可卸下工件,完成加工过程。
工件的加工流程图如图3所示,以Q7产品为例,胎具上一次装夹15只工件,那么就有30个φ3.7的平底盲孔需要加工,刀具选用φ3.7的2刃钨钢立铣刀,钻削加工,钻削深度1.65mm。在预备状态时紧靠工作台上的定位固定好胎具,按启动后,主轴旋转,待主轴即将达到额定转速时,X、Y轴运转到加工工位,也就是个孔的X、Y工件坐标值,此时冷却液打开、Z轴快速下降到加工区,即铣刀端面即将触及工件加工面,迅速变用缓慢的工进速度开始钻削加工。当加工深度到达设定深度(1.65mm)时,Z轴带动铣刀迅速抬起,抬起的高度为铣刀端面水平方向上碰触不到工件及胎具为准。计数器加1后程序进行比较运算,判断加工是否完了,如否,则X、Y轴继续运转到下一加工工位,再重复Z轴下降加工动作。如加工完了,产量计数器加数、主轴停转、冷却液关闭,发出5s声光报讯,用以提醒操作者,各轴移动到初始位:Z轴到上端;X轴到左端;Y轴到外端。卸下胎具后,一个加工周期完成,装上胎具再按启动即开始进行下一轮加工。
四、一些着重的电气措施
1.主回路加装漏电断路器,相应回路都安装合适的断路器。
2.PLC和伺服系统的电源处都分别加有电源滤波器。
3.各直流继电器线圈都并接反峰二极管,交流接触器线圈并接阻容吸收回路。
4.润滑、主轴冷却都设液位低报警器。
5.伺服控制线、人机界面通讯线等使用屏蔽线,并远离电源线。
6.在拖链内走线,使用耐折的柔性电缆,并尽量增大拖链的弯曲半径。
7.变频器与PLC、伺服驱动器等保持一定距离。1.概要
本系统是在建设/土木现场所使用的火药自动填充设备,在一定误差范围内填充火药的设备。
-适用领域:单个机器
-产品种类:K300S,HMI机器(PMU)
2.系统构成
-把纸张做成容器后,自然填充火药。
-把填充完成的火药桶以12个火药桶放在重量计上,经过指示器测量后,把此重量数据通过RS-422通讯发给K300s。
-重量在误差范围以外的产品处理为不良品,合格产品已送到下一个过程。
-弹药填充量和火药爆破能力有直接关系,产品合格与否的判断是非常重要。
-合格产品应按一定单个包装。
-HMI与PLC通过RS-422方式进行通讯。
3.系统构成
4.主要功能
-通过重量计和PLC的通讯来判断产品的合格与否。
一、前言
采用变频器驱动的电动机系统因其节能效果明显、调节方便、维护简单、网络化等优点而被越来越多的应用。由于变频器特殊的工作方式带来的干扰越来越不容忽视。变频器干扰主要有:一是变频器中普遍使用了晶闸管或者整流二极管等非线性整流器件,其产生的谐波对电网将产生传导干扰,引起电网电压畸变(电压畸变率用THDv表示,变频器产生谐波引起的THDv在10~40%左右),影响电网的供电质量;二是变频器的输出部分一般采用的是IGBT等开关器件,在输出能量的将在输出线上产生较强的电磁辐射干扰,影响周边电器的正常工作。
二、谐波和电磁辐射对电网及其它系统的危害:
1.谐波使电网中的电器元件产生了附加的谐波损耗,降低了输变电及用电设备的效率。
2.谐波可以通过电网传导到其它的用电器,影响了许多电气设备的正常运行,比如谐波会使变压器产生机械振动,使其局部过热,绝缘老化,寿命缩短,以至于损坏;还有传导来的谐波会干扰电器设备内部软件或硬件的正常运转。
3.谐波会引起电网中局部的串联或并联谐振,从而使谐波放大。
4.谐波或电磁辐射干扰会导致继电器保护装置的误动作,使电气仪表计量不准确,甚至无法正常工作。
5.电磁辐射干扰使经过变频器输出导线附近的控制信号、检测信号等弱电信号受到干扰,严重时使系统无法得到正确的检测信号,或使控制系统紊乱。
一般来讲,变频器对电网容量大的系统影响不十分明显,这也就是谐波不被大多数用户重视的原因。但对系统容量小的系统,谐波产生的干扰就不能忽视。
三、有关谐波的国际及国家标准
现行的有关标准主要有:IEC61000-2-2,IEC61000-2-4,欧洲标准EN61000-3-2,EN61000-3-12,国际电工学会的建议标准IEEE519-1992,中国国家标准GB/T14549-93《电能质量共用电网谐波》。下面分别做简要介绍:
1.:
IEC61000-2-2标准适用于公用电网,IEC61000-2-4标准适用于厂级电网,这两个标准规定了不给电网造成损害所允许的谐波程度,它们规定了大允许的电压畸变率THDv。
IEC61000-2-2标准规定了电网公共接入点处的各次谐波电压含有的THDv约为8%。
IEC61000-2-4标准分三级。类对谐波敏感场合(如计算机、实验室等)THDv为5%;第二类针对电网公共接入点和一部分厂内接入点THDv为8%;第三类主要针对厂内接入点THDv为10%。
以上两个标准还规定了电器设备所允许产生谐波电流的幅值,前者主要针对16A以下,后者主要针对16A到64A。
IEEE519-1992标准是个建议标准,目标是将单次THDv限制在3%以下,总THDv限制在5%以下。
2.国内标准:
GB/T14549-93中规定,公用电网谐波电压(相电压)限值为380V(220V)电网电压总THDv为5%,各次谐波电压含有率奇次为4%,偶次为2%。
由以上标准看来,一般单次电压畸变率在3~6%,总电压畸变率在5~8%的范围内是可以接受的。
三、减少变频器谐波对其它设备影响的方法
1.增加交流/直流电抗器
采用交流/直流电抗器后(如图1),进线电流的THDv大约降低30%~50%,是不加电抗器谐波电流的一半左右。
2.多相脉冲整流
在条件具备,或者要求产生的谐波限制在比较小的情况下,可以采用多相整流的方法。12相脉冲整流THDv大约为10%~15%,18相脉冲整流的THDv约为3%~8%,满足EN61000-3-12和IEEE519-1992严格标准的要求。缺点是需要专用变压器和整流器,不利于设备改造,价格较高。
3.无源滤波器
采用无源滤波器后(如图2),满载时进线中的THDv可降至5%~10%,满足EN61000-3-12和IEEE519-1992的要求,技术成熟,价格适中。适用于所有负载下的THDv<30%的情况。缺点是轻载时功率因数会降低。
4.输出电抗器
也可以采用在变频器到电动机之间增加交流电抗器的方法(如图3),主要目的是减少变频器的输出在能量传输过程中,线路产生的电磁辐射。该电抗器必须安装在距离变频器近的地方,尽量缩短与变频器的引线距离。如果使用铠装电缆作为变频器与电动机的连线时,可不使用这方法,但要做到电缆的铠在变频器和电动机端可靠接地,接地的铠要原样不动接地,不能扭成绳或辨,不能用其它导线延长,变频器侧要接在变频器的地线端子上,再将变频器接地。
四、减少或削弱变频器谐波及电磁辐射对设备干扰的方法
上面介绍的方法是减少变频器工作时对外设备的影响,但并不是消除了变频器的对外干扰,如果想提高其它设备对变频器谐波和电磁辐射的免疫能力,尤其是在变频器(品牌不同,产生的干扰程度可能不一样)干扰较严重的场合中常用的方法通常有以下几种:
1.使用隔离变压器
使用隔离变压器主要是应对来自于电源的传导干扰(如图4)。使用具有隔离层的隔离变压器,可以将绝大部分的传导干扰阻隔在隔离变压器之前。还可以兼有电源电压变换的作用。隔离变压器常用于控制系统中的仪表、PLC,以及其它低压小功率用电设备的抗传导干扰。
2.使用滤波模块或组件
目前市场中有很多专门用于抗传导干扰的滤波器模块或组件,这些滤波器具有较强的抗干扰能力,还具有防止用电器本身的干扰传导给电源,有些还兼有尖峰电压吸收功能,对各类用电设备有很多好处。
常用双孔磁芯滤波器的结构见图5所示。还有单孔磁芯的滤波器,其滤波能力较双孔的弱些,但成本较低。
3.选用具有开关电源的仪表等低压设备
一般开关电源的抗电源传导干扰的能力都比较强,因为在开关电源的内部也都采用了如图5结构类似的滤波器。在选用控制系统的电源设备,或者选用控制用电器的时候,尽量采用具有开关电源类型的。
4.作好信号线的抗干扰
信号线承担着检测信号和控制信号的传输任务,毋庸置疑,信号传输的质量直接影响到整个控制系统的准确性、稳定性和可靠性,做好信号线的抗干扰是十分必要的。
对于信号线上的干扰主要是来自空间的电磁辐射,有常态干扰和共模干扰两种。
常态干扰的抑制常态干扰是指叠加在测量信号线上的干扰信号,这种干扰大多是频率较高的交变信号,其来源一般是耦合干扰。抑制常态干扰的方法有:
(1)在输入回路接RC滤波器或双T滤波器。
(2)尽量采用双积分式A/D转换器,由于这种积分器工作的特点,具有一定的消除高频干扰的作用。
(3)将电压信号转换成电流信号再传输的方式,对于常态的干扰有非常强的抑制作用。
共模干扰的抑制共模干扰是指信号线上共有的干扰信号,一般是由于被测信号的接地端与控制系统的接地端存在一定的电位差所制,这种干扰在两条信号线上的周期、幅值基本相等,采用上面的方法无法消除或抑制。对共模干扰的抑制方法如下:
(1)采用双差分输入的差动放大器,这种放大器具有很高的共模抑制比。
(2)把输入线绞合,绞合的双绞线能降低共模干扰,由于改变了导线电磁感应e的方向,从而使其感应互相抵消,如图6示。
(3)采用光电隔离的方法,可以消除共模干扰。
(4)使用屏蔽线时,屏蔽层只一端接地。因为若两端接地,由于接地电位差在屏蔽层内会流过电流而产生干扰,只要一端接地即可防止干扰。
无论是为了抑制常态干扰还是抑制共模干扰,都还应该做到以下几点:
(1)输入线路要尽量短。
(2)配线时避免和动力线接近,信号线与动力线分开配线,把信号线放在有屏蔽的金属管内,或者动力线和信号线分开距离要在40cm以上。
(3)为了避免信号失真,对于较长距离传输的信号要注意阻抗匹配。
5.在使用以单片机、PLC、计算机等为核心的控制系统中,编制软件的时候,可以适当增加对检测信号和输出控制部分的软件滤波,以增强系统自身的抗干扰能力。
五、
干扰的分布参数是很复杂的,在抗干扰时,应当采用适当的措施,既要考虑效果,又要考虑价格因素,还要因现场情况而定。采用的措施只要能解决问题即可,往往过多的抗干扰措施有可能会产生额外的干扰,具体情况具体解决