西门子模块6ES7222-1HF22-0XA8大量库存
1、设备的加工要求:
要求在一个塑料桶的双面上贴上厂家的标签和里面所装的物品的参数。人工把一个生产好的塑料桶放到传送带上,传送带是由一个普通的电机驱动,传送带上有一个两侧可以调整的导轨槽,塑料桶就放在导轨槽上运行。在传送带的两侧各有一个靠液化气进行加热的装置,在塑料桶过来以后对其A、B两侧进行加热,传送带把桶往前运送,当一个光电传感器检测上以后,传送给控制器,由控制器发送一个命令给传送带上部的扶稳冲气装置,这个装置带着一个气管落到塑料桶的桶口上,并且往桶里面冲气,使桶形成一个外凸的圆弧形状。在这个过程中,传送带一直运行,上面的扶稳冲气装置通过一个同步带由一个电机驱动,这个电机的运动由控制器控制,这里要求这个电机从加速度到恒速到减速度停止时,这个时候的的运行速度必须和传送带的运行速度严格要求一致,否则这个桶就会偏到或者在机械装置上刮蹭了。在这个动作的需要开始贴标,这是有三个电机和机械装置一起组合完成,其中的一个电机负责送标,一个电机否则收标,还有一个电机驱动贴标头负责把标贴到塑料桶上,标在贴之前,必须进行加热才能往塑料桶上贴住,这个贴标的速度也必须严格要求和传送带的速度一致,否则会造成贴的标变形。
摘要:
1 空压机干燥塔工艺流程
我厂使用的WZG-10/8Ⅰ型无热再生压缩气干燥塔采用双塔切换,一塔工作,一塔再生,相互交替的工作方式。压缩气干燥再生过程的工艺流程如图1。
图1 压缩气干燥再生过程工艺流程
从无油压缩机出来的压缩空气,经冷却器降至40℃以下,再经缓冲罐进入气液分离器进行初步分离,将气体中可携带的液滴分离出来,再经电磁阀F1进入干燥塔A,沿干燥床层上升脱水干燥。干燥后的气体大部分(86%左右)经止回阀、过滤器输送到储气罐供用户使用,约14%的干燥空气通过球阀,降至常压进入干燥塔B,使先前吸附了水分的干燥剂获得再生,再生后的气体由电磁阀F4经消音器排入大气。
干燥塔成对配置,交替工作,工作周期分10min、16min、20min三种。
F2、F4为常闭阀,F1、F3为常开阀,利用干燥塔控制器来控制F1~F4的开断,从而实现气体的干燥过程。
4个阀的动作波形图如图2(10min):
图2 电磁阀工作波形图
2 利用PLC改造干燥塔控制器
我厂空压机B站共有4台干燥塔,原干燥塔控制器为单台控制,一台控制器控制一台干燥塔,控制不便且故障多,严重制约了我厂压缩空气的产生以及各用气部门的生产,利用金星Master-K30HPLC机对原控制器进行改造。
该PLC电源为DC24V或AC110/220V50/60Hz,具有I/O=16/16共32个点,P0~P7、P10~P17为输入点,P20~P27、P30~P37为输出点。
根据每个干燥塔4个电磁阀的动作过程,可以利用简单的时序电路来实现,以满足控制要求。利用3种转换开关来实现3种循环时间的转换,利用单极空气开关来实现程序的驱动,4个空气开关分别驱动4台干燥塔,并且作为PLC输入点的短路保护。
该PLC的价格仅相当于1台干燥塔控制器的价格,1997年初改造后,4年来此控制器一直未出现过任何故障,大限度降低了故障率和维修量,备件量也降为零,取得了很好效益。
1引言
在金属等材料切削成型加工领域,珩磨加工属于精加工后期的精整加工,其目的是为了获得更小的表面粗糙度,并稍微提高精度。珩磨用刃形和刃数都不固定的磨具或磨料进行微小加工余量切削的方法。
2工艺原理
珩磨用镶嵌在珩磨头上的油石(又称珩磨条)对精加工表面进行的精整加工,又称镗磨。珩磨主要应用在对孔的加工,但根据需要有时也用珩磨来加工外圆, 平面, 锥形孔和非圆孔(例如转子发动机的非圆孔珩磨)。珩磨加工不一定要对所有的孔有珩前要求,珩磨需要根据加工要求, 要能改善尺寸精度,形状精度, 表面精度,甚至位置精度。几乎所有在工业领域应用的工艺材料都可以用珩磨加工。根据不同的工件材料选择相应的切削砂条,使得珩磨可对硬质处理和未硬质处理的钢,铸铁,青铜,轻金属,粉末合金及镀铬或者其它镀层的金属进行加工。加工的尺寸范围为直径1-2000mm,长度至24米的工件。珩磨的应用范围已扩展到了整个金属加工工业领域。主要的应用领域为:汽车工业,刀具及机床加工工业,液压及气压器件生产以及航空航天领域。在空气压缩机和电机的生产制造中珩磨加工也得到了广泛应用。
3方案设计
由中达电通公司开发的卧式精密珩磨机,具有较高的工作效率和工作性能,该系统不但jingque珩磨工件内圆,能够jingque检测工件内圆的“凸点”,加工效率也远远超过内圆磨床。基于中达机电技术的自动化卧式精密珩磨机如图1所示。
图1 自动化卧式精密珩磨机
3.1控制系统的核心工艺及控制分析
系统要求珩磨和“凸点”检测进行,珩磨的厚度主要由珩磨油石、油压控制检测的光栅和PLC共同实现,由于台达32EH00M伺服控制专用PLC系列能够接收2信道差动输入,无需其它转换电路,光栅尺信号可直接接入PLC,且将伺服驱动的分频输出直接输入PLC,以便实时检测机台的位置。在实际的珩磨过程中,因工件内圆的“凸点”存在,由此形成珩磨变频马达电流瞬间的一个峰值,利用系统核心PLC记忆该电流峰值形成时的位置,控制伺服小车在此“凸点”珩磨摆动的次数,达到预期的珩磨精度,也可以根据光栅尺内圆半径的检测,自动研磨至设定的厚度。该系统采用变频负载/电流线性对应关系,完成了对加工工件内圆的“凸点”检测。台达V系列变频为全矢量高性能的驱动,能够快速jingque反应出负载电流的变化,而台达PLC采用通讯方式快速采样变频器电流为该系统的关键所在。
3.2控制结构设计
控制结构参见图2。
触摸屏 /DOP
3.3硬体控制方案
PLC :DVP32EH00M台达伺服专用。
变频器 :VFD075V43台达全矢量控制型。
伺服系统:3000W/台达中惯量系列。
系统电控柜参见图3。
图3伺服系统电控柜
3.4 人机界面设计
关键的控制参数如图4、图5、图6所示。
图4 系统监控主页
图5 伺服参数画面1设置
图6 伺服参数画面2设置
3.5主要技术规格
(1)加工孔径: 3-250mm
(2)大加工长度:2500mm
(3)主轴转速: 50-600转/分,无级调速
(4)珩磨速度:1.00m-22m/分
(5)主轴功率: 7.5KW
(6)机台功率:3KW
(7)油泵功率:400W
4结束语
方案研发运行结果说明,系统设计达到预期设计效果。该机床可以加工各种材料的内圆工件,从淬火钢、硼铸铁、硬质合金、陶瓷到铝合金、青铜、有机玻璃等硬软材料,以及其它难加工材料的内圆工件。由于台达PLC/EH系列提供大容量掉电保持数据寄存器(8000项),控制系统性能具有无须其它外设即可实现用户工艺配方的存储,方便现场生产的灵活调度的特点。
电子设备正在迅速发展,尤其是车用显示系统,视频和视频处理正成为汽车应用中增长较快的技术。像车道保持、驾驶监控、夜视以及车载娱乐设备等都是典型的应用需求。
设计车用视频系统时,需要考虑系统结构的几个方面:是系统的功能,应确定这个系统是针对安全系统处理视频信息、还是车载娱乐设备处理流动的视频数据,或者是两者的结合而设计。是互联的类型和视频系统器件的速度。还应考虑其它因素包括有多少视频源、有多少显示输出、系统中不同的设备相隔多远、采用哪种布线方案,以及整个系统的成本。由于可编程器件具有很高集成度和灵活性,以及低功耗和宽的工作温度范围,且价格不断下降,该类器件对于从事汽车电子设计的工程师来说越来越具有吸引力。本文将主要介绍如何利用Lattice公司的可编程器件设计车用显示系统。
电子设备的互联
在汽车电子设备中,各种信息源的互联可采用几种拓扑结构,即星型、总线型和环型结构。这些拓扑结构如图1所示。星型结构是一对一的连接系统,外部的设备连接到视频控制器的一个端口。通信信道可以是双向或者单向的。
总线型结构是一点对多点,单个设备可以连接到总线。总线上的设备必须有本地控制器,用来协调总线上的设备何时以及如何进行通信。这种类型的系统易于扩展,因为每个设备都有一个唯一的地址。
环型结构中每个设备都有一个唯一的地址,还有本地数据控制器和用来连接到环的媒体收发器。当显示设备收发器接收到前一个设备的信息后,在数据包中查看自己的地址,如果地址相匹配的话就处理数据或者命令,如果地址不匹配,就把数据包传送给环中的下一个设备。为使各种设备都能够传送音频和视频包,用于娱乐的汽车环型总线都被设计成很高的带宽,以便观众能实时观看。从图1中可以看出,无论哪种结构都需要采用视频控制器。
图像捕获与显示
有效确保图像的捕获和处理十分重要,以下将介绍几种解决方法。在图2展示的智能图像捕获系统的几个例子中,信息从车辆的多媒体总线传送到视频控制器。通常使用的是MOST和D2B协议的环型或总线结构。
在这三个例子中,MT9V111/125是适用于汽车应用的图像传感器。例1采用了基于微处理器的系统,在数据发送到显示子系统的接口之前进行控制和视频数据处理。例2采用基于闪存的低成本CPLD处理视频。例3采用了基于SRAM的FPGA器件。在以上所有例子中,均由处理单元对发送的信息进行处理。其中,后两个例子中采用的可编程逻辑器件体现了重构硬件的灵活性。特别是例3在FPGA中使用了Lattice公司的微处理器核LatticeMico8,可获得更大的灵活性。
发送所捕获图像的一种方法是将并行视频数据转换成串行流,并采用8b/10b编码在单对双绞线LVDS接口上传送。这个接口将时钟嵌入数据流,减少了传送信号到视频控制器所需的导线数目。在接收端,系统需要对数据进行处理,以便返回原来的形式。图3是4个LCD显示的例子。前三个例子均使用SERDES电路转换信号,其中例3采用具有集成SERDES功能的基于SRAM的FPGA。此例中采用的是LatticeECP/ECP2FPGA,由于该器件中已嵌入了关键时序参数,设计者不必再花大量时间和精力来完成此任务。
LatticeECP2和LatticeECP2M系列重新定义了低成本FPGA,在更低的成本下拥有更多的FPGA特性。这些器件含有sysDSP块和工程预制的源同步I/O。LatticeECP2M具有高达5.3Mb的RAM块,LatticeECP2具有高达1.1Mb的RAM块。在LatticeECP2M中还具有3.125Gbps嵌入式SERDES,可支持PCIExpress、Ethernet(1GbE和SGMII)以及多个其它标准。通过集成以前只有高成本、高性能FPGA才具有的特点和性能,这些系列的产品扩展了低成本FPGA的应用范围。
LatticeMico32是一种针对LatticeFPGA优化的32位RISC软微处理器。如果将LatticeECP2M与开放源代码的LatticeMico32软处理器结合在一起,则LatticeECP2M可以实现完整的视频控制器功能(如图4所示)。内部的外设通过双WISHBONE总线进行通信。定时器、DMA、存储器控制器、通用I/O、串行外围接口和UART均可与LatticeMico32相连。
本文小结
由于可编程器件具有可重构的特点,特别适合于应对各种变化(例如不断修改的标准和新兴的标准),并可以快速实现新版标准。可编程器件还具有成本低和生命周期长的优势,能够满足车内电子设备与汽车寿命相匹配的要求,设计者也易于对产品进行升级、维护和更新。