西门子模块6ES7211-0BA23-0XB0参数设置
泵站的控制系统采用施耐德Modicon TSX Premium系列PLC为控制核心。Modicon TSXPremium系列PLC适用于大、中型控制系统,具有强大的浮点运算能力。配套的编程软件PL7Pro可以用指令表、梯形图,结构化文本等语言编程,允许用户创建自己的功能块(DFB)和图形的运行画面。控制柜上采用专门面向PLC的MT500系列触摸屏人机界面,配套编程软件为EasBuilder500。上位机操作系统采用微软的bbbbbbs 2000Professional,应用软件为国产的组态王6.5。控制系统主要分两部分:机组部分和公用部分。本文主要介绍机组部分。
2 系统方案
系统方案如图1所示。机组高压柜和电容馈线柜中装有ALSTOM智能保护装置,可将I/O参数通过MODBUS总线传输到PLC中。机组和辅助设备的各状态接点和控制接点接到PLC上。数据经过PLC处理后,通过串口通信送到触摸屏显示,通过以太网传输给上位机。现阶段,工作人员通过触摸屏实现开停机组、开停辅助设备和开关蝶阀的操作。
图1 泵站机组控制系统图
3系统的主要功能和具体实现
为便于介绍,下文以1#泵机组为例。根据泵站控制的工艺要求和系统特点,本控制系统主要实现报警、机组启停、机组辅助设备及蝶阀控制、数据处理和通讯等功能。
3.1 报警功能
高压柜和电容馈线柜出现事故和故障、辅助设备出现故障的时候,PLC有专门的输出接点指示。触摸屏上弹出事故和故障报警界面,等待工作人员处理。高压柜、风机等设备的事故作用于停机。
3.2 机组启停
工作人员在触摸屏上按了开机或停机键以后,PLC将自动完成开停机过程。当有事故发生时,PLC完成事故停机过程。机组启停流程如图2和图3。
图2 泵开机流程
图3 泵正常停机和事故停机流程
3.3 机组辅助设备及蝶阀控制
机组辅助设备主要包括电机风机和稀油泵,蝶阀包括进口蝶阀和出口蝶阀。在机组启停流程图中可以看出,机组启停的流程包含了对机组辅助设备及蝶阀的控制。此处另设的控制程序,为针对单个设备的手动控制,便于机组控制系统的安装与调试。
3.4 数据处理功能
根据系统需要,PLC处理的模拟量包括泵组进口压力和出口压力、电机定子温度和油水温度。前者的采样周期较短,为20ms;后者采样周期较长,为0.5s。本文为数据处理自己定义了一个功能块(DFB),输入信号包括功能块复位(EBOOL型)、模拟量通道地址(WORD型)、采样次数(WORD型,本文定为10次)、采样周期脉冲(EBOOL型,由定时器实现),输出信号为模拟量信号在通讯输出缓冲区中的地址。数据处理程序不是简单的求平均值,而是先将数据依次赋值给功能块的公用变量,将10次的采集结果求和,减去大值和小值后再平均。功能块的输出值即为处理后的模拟量值,其对应的地址即为该值在输出缓冲区中的地址,便于触摸屏采集和显示。
3.5 通讯功能
现阶段,本系统的通讯主要包括两部分:与触摸屏的串口通讯;与智能保护装置的MODBUS总线通讯。
触摸屏MT500是专门针对PLC的人机界面,其集成了包括施耐德、西门子、三菱等几十种PLC的串口通讯程序,与PLC的通讯只需要进行简单的组态操作即可实现。本文在EasyBuilder500中将触摸屏系统参数中的PLC类型设置为bbbEMECANIQUEUnibbbWay,即施耐德PLC。通讯参数包括:RS-485、波特率9600、数据位8、无校验位、停止位1。PLC上也进行同样的设置。触摸屏在编制界面时,将控制信号和显示信息的地址填写为PLC输出缓冲区中对应的地址,即实现了通讯。
MODBUS通讯协议是施耐德公司设计的一种用于工业控制的主从结构式串口通讯协议,可用于实现简单的主从结构式网络监控。该协议具有两种传输模式:RTU模式和ASC模式。本文采用的是RTU模式,其报文格式如表1所示。
表1 MODBUS协议RTU模式报文格式
它没有起始位和停止位,而是以至少3.5个字符间隔时间(T1-T2-T3-T4)标志开始和结束。信息帧由地址域、功能域和CRC校验域构成,所有字符位由16进制数组成。本系统中PLC为主站,高压柜为从站1,电容馈线柜为从站2。PLC以轮巡的方式访问从站,读取数据。PLC通过MODBUS访问从站的指令为READ_VAR,参数包括网络号、从站地址号、数据类型、数据首地址、数据个数、接收缓冲区地址和大小等。由于CRC校验是以Byte型数据为基础,而PL7Pro编程软件绝大多数指令不支持Byte型数据,本文在执行CRC校验前设有专门的子程序将Byte型消息段转化为高8位为16进制数00的WORD型数据段。本文的CRC检验子程序流程如图4所示。
1引言
艾默生网络能源有限公司中试部生产线(以下简称中试生产线)是建于1998年的一条整体呈长方形循环运行的产品装配线。生产线采用PLC自动控制系统对整个生产流程进行控制,操作人员可通过选择运行模式来将整条生产线划分为1~3个小段,各段分别独立及组合运行;可手动/自动切换运行;具有多种故障报警灯指示。目前PLC采用艾默生自己制造的EC20型产品,该型产品指令丰富,编程方便,运行可靠,兼容性强,能够较好的满足电子行业生产的应用。
2系统设计
2.1 装配线平面布局
图1为生产线的平面布置图。
图1 中试生产线平面图
2.2 中试生产线设备构成和功能简述
(1)中试生产线由两条长长的平行传送带A和B作为其主体设备,生产用的工装台就放置在这两条传送带上,依次顺序运行到一个个装配测试工位。两条传送带A和B运行方向工装台就是从A这边去,从B那边回。
(2)传送带A和B两端通过末端的单向移载传送带连通成环形的整体,工装台在运行到某一条传送带的末端,就通过末端的单向移载传送带转移到另一条传送带的起点。图1中左边的末端单向移载传送带简称“左一”,右边的末端单向移载传送带简称“右一”。
(3)在传送带A和B之间,还有两条中间的双向移载传送带,左边的简称“左二”,右边的简称“右二”。通过选择运行模式,这两条双向移载传送带可以投入运行,在从而实现将生产线分解成1~3小段组合运行的功能。这样可以在生产线各小段分别安排不同工序流程的多种产品进行加工,tigao了生产效率,满足多产品排产的要求。
(4) 图1中左边为控制柜,内装PLC及其外围输入输出电路,还有电机主电路的设备,包括变频器、空气开关、接触器等。
(5)在传送带中,布置了很多的行程开关、微动开关,用于检测工装台运行的位置,转换成为开关量数字信号输入PLC控制器,使PLC能根据这些工装台的位置进行运行程序的运算和控制输出。
(6)在装配测试工位上,还有一些手自动转换开关、脚踏开关、阻挡气缸释放按钮等,多是开关量数字信号输入(除了气缸按钮不是),可通过这些装置人工操作工装台和传送带的运行。
(7)电机是由PLC输出的开关信号来进行启停控制的;气缸的顶升和下降是由电磁阀控制生产用压缩空气对气缸的进气和排气来实现的,而电磁阀则也是由PLC输出开关信号来控制的。
(8) A和B传送带的运行速度分别由两台变频器来调节速度大小,运行中采用定速运行,满足运行工艺要求。
2.3 运行和控制流程
(1) 上电后A和B传送带并行反向运行,其速度由变频器面板设置,固定运行,调试成功后不需要更改。
(2)两端的移载传送带负责把工装台在两条A和B传送带之间循环移载。例如当工装台沿A线运行到“右一”前A1位置碰到检测的行程开关,则当“右一”处于空闲时(无工装台在上面,也没有工装台堆积在B传送带起点B1时),“右一”将会进入单向移载程序。这时工装台继续运行到就位位置A1’触动行程开关,则“右一”气缸会顶升,把工装台顶起来,“右一”传送带启动运行,把工装台送到对面的B1起点,气缸放气,工装台放下。这就完成了一次单向移载。“左一”运行方式同上述方式的顺序是一致的。
(3)在选择不同的小段组合工作运行模式时,如果两条传送带被分成两段或三段循环运行,则中间的两段移载传送带负责把工装分别在各自的循环路径上移载,实现分段运行。例如当工装台沿A传送带运行到“左二”前位置A3,则开始进行移载检测,如果“左二”处于空闲时(无工装台在上面,也没有工装台堆积在B传送带出口点B3时),“左二”将会进入移载程序,这时工装台继续运行到就位位置A4触动行程开关,则“右一”气缸会顶升,把工装台顶起来,“右一”传送带启动运行,把工装台送到对面的B4点,气缸放气,工装台放下。这就完成了一次A向B的工装台移载。而对面的工装台也可按相仿的顺序从B5点转移到A5点。
(4) 中间移载传送带根据各循环路径上工装到位的先后顺序来排队,先到先走,解决两边冲突的问题。
(5) 移载传送带通过气缸顶升和皮带滚轮传送来实现工装移载。
(6) 现场有手/自动转换开关、脚踏开关用以实现手动操作。
(7) 整条线运行前先根据要求选择运行模式(即小段组合运行方式)。
3PLC控制设计
3.1 PLC配置设计
控制柜是整个试生产线的中核心,其中关键的设备是PLC。中试生产线选用的是艾默生网络能源有限公司的新产品EC20系列的PLC及扩展模块。
EC20系列PLC是高性能的通用PLC可扩展多个模块,扩展模块有数字型、模拟型、温度型的模块。
EC20的编程采用界面友好的窗口软件,支持多种编程方式(梯形图、指令列表、顺序功能图),方便地监控和调试,可在线修改程序。
(1) PLC设备配置
1个主模块EC20-3232BRA,继电器型输出,220VAC电源,32输入和32输出;
1个扩展模块EC20-0808ER,继电器型输出,8输入和8输出。
(2) 输入设备配置
输入设备有:
●旋臂式行程开关,用于工装台的位置检测;
●限位开关,用于工装台、运动机械、气缸的到位检测;
●脚踏开关,用于装配工位上的人工操作;
●转换开关,用于操作模式的选择,在控制柜和装配工位上,控制柜上是整体运行模式的选择,装配工位上是手/自动切换。EC20输入端是漏型输入,输入设备采用EC20模块的COM点为输入接线回路端。
(3) 输出设备配置
输出设备有:
●继电器-电磁阀-气缸,PLC输出点通过控制继电器来控制电磁阀,电磁阀再控制气缸的进气和排气,从而实现气缸的顶升和下降,继电器-电磁阀-气缸的组合是通过电气输出的接点控制气动操作设备的一种有效手段;
●继电器-接触器,PLC输出点通过控制继电器来控制接触器,从而实现电机的启停操作、设备的开关及其它电路的通断,继电器-接触器的组合是用小容量的输出点来控制大容量的电气回路的正确方法;
●继电器,PLC部分输出控制可通过继电器直接进行,如指示灯、蜂鸣器等小容量电路。
一般情况下要注意PLC的输出点不应用于直接接入和控制各种被控制电气回路,要通过继电器等元件来tigao控制容量,以及起到隔离的作用。
3.2 PLC的顺序步骤程序设计要点
环形生产线的运行,主要的流程都是按顺序进行操作的。大多数情况下工程技术人员采用的是梯形图的编程方式,也有少量采用指令列表的方式。顺序功能图的方式还不十分为广大技术人员熟悉。这里讨论的是采用梯形图编程时的顺序步骤程序设计。
在编程前,需要把设备的流程转变为顺序的逻辑流程图。第二节中所讨论的流程,是一种操作的外在现象和设计思想,而程序的逻辑流程图,则是准确到包含以下及其他未说明的jingque设计:输入检测和受控设备的动作配合、步骤的准确衔接、操作的延时长短设置、操作的条件和限定、对人和设备保护防护设限、动作先后判断及优先选择、故障的诊断和显示、故障后的保护和恢复等。
如果设计和编制程序时,不编制流程和顺序控制点,不设置顺序控制点的代表元件,则程序做出来的可读性、可维护性会很差。比如一台电机的启动,如果仅是套用一堆输入、延时、条件、限制逻辑在PLC输出线圈之前,其中没有一个代表顺序的触点元件,那么就是上述无序编程的典型做法。当程序点数增多,后就可能导致程序的编制难以控制,出错可能性大,调试非常困难、维护和调整难以下手。
中试生产线的编程,采用了两项主要的编程方法。
(1) 顺序步骤程序设计
顺序步骤程序设计,是将一长串流程分解为一个个步骤,每个步骤单独完成一项逻辑运算和动作。在每个步骤上,都设置一个人为的标志位,用以明确表示当前运行的步骤,并通过此标志位限定设备的输出,达到使整个系统按照步骤严格运行的目的;并使得整个程序的条理清晰,各步骤逻辑简洁明确,有利于日后的维护和修改。
如图2为中试生产线上“左一”单向移载传送带的编程示例:
1引言
在焦碳生产工艺过程中,需要将气煤、肥煤、焦煤、瘦煤四种煤按一定比例配成混合煤,送入焦炉进行高温炼焦。配比的准确性以及配料系统的可靠性将直接影响焦碳产品的质量。通过tigao焦化配煤系统的可靠性、稳定性、准确性来tigao焦碳的质量具有非常重要的社会效益和经济效益。
目前,武钢焦化厂备煤车间担负着公司燃煤接卸、炼焦和输送的工作。原配煤设备共配置了14套,经过多年使用,已老化严重,该设备有如下缺陷:
系统调节精度差,影响配煤比的精度;主要附件电子秤可靠性差,且易损坏;
抗干扰能力差;电子秤标定复杂,工作量大;调速性能差,设备运行可靠性差,现场维护工作量大;岗位工人的劳动强度大,环境差,无自动配料功能。
必须对配煤系统进行改进:用核子秤进行计量,设置上位机进行配料自动控制,建立配料模型,统计打印,下位机采用PLC进行电机、皮带顺序控制、料流计量、圆盘速度的控制。圆盘给媒机采用变频器驱动控制,确保系统配煤误差<2%。|
2 系统结构
在系统中我们将采用PLC可编程控制器加上核子秤配料系统,并在系统结构上采用主皮带配料方式(一条龙配料方式),这样新的配料系统可不加小皮带,使该项目投资及用户日后的维护量达到小、少。该配煤系统可分为物料计量、微机操作、控制、变频调速四大部分。
2.1 控制系统组成
PLC可编程控制器采用MODICON公司的产品,它的CPU模块为CPU11303、电源模块CPS11400、8通道模入模块ACI03000、4通道模出模块14ACO02000、开关量输入模块DDI35300、继电器模块DRA84000、高速计数模块DRO84000,编程软件采用MODSOFT软件。上位机为IPC研华工控机(包括显示器、打印机),采用FIX组态软件编程。电机的变频器为日本安川G5A40111A。工作流程图如图1所示;控制系统原理图如图2所示。
2.2 上位机功能
上位机采用先进可靠的研华工控机作为管理机,工艺流程动画显示美观大方,友好的操作界面简单易学,其功能如下:
图1 工作流程图
图2 控制系统原理图
⑴各种配煤操作界面、数据显示及打印管理,用户可方便的在上位机上进行各种数据的修改操作,运行数据的图形显示及打印各种报表;
⑵通过网卡与控制部分的配料模块和开关量控制模块相联,能够下载计量、控制、系统参数,以及核子秤命令、精度测试命令等,能够上传各模块当前状态和参数。
2.3 控制系统功能
控制部分是由开关量控制模块和配料控制模块组成,核子秤内部控制模块之间的信号传输采用差分频率信号传输技术,具有极强的抗干扰能力和远传能力,从而保证了系统信道的可靠性和准确性,在反馈控制上采用新型的人工智能PID调节算法,无振荡,无超调。各模块功能如下:
⑴ 开关量输入模块
该模块能实现系统总liuliang、配比、水分的选择,各种皮带启停信号的输入和配料模块启停信号输出,控制信号及大屏显示接口,连锁及配料控制和上位机的通讯,并留有备用选择器。
⑵ 配料控制模块
配料控制模块能实现信号的采集、计算并与给定liuliang比较将误差量按照控制算法进行计算,转换成4~20mA模拟量信号,发送给变频调速器,调节电机转速从而改变当前下料量,确保精度。
从控制方案实施可见:新配料系统在上位机系统出现故障时,系统除打印报表功能无法实现外,其它控制部分均能正常工作,对整个配料系统无影响。由于在设计时将控制分散到控制模块而将管理集中在工控上位机中,系统不仅保证了高可靠性的控制功能,又具有良好的用户界面和管理功能,在硬件设计中考虑了配料控制模块的可维护性,用户只需要较少的微机及控制理论知识、维护经验,就能及时方便地确保整个自动配煤系统连续可靠的运行。
2.4 报警功能
当系统各测量单元出现故障时,工艺流程主画面将以警示色提醒用户,按下相关键后,可由CRT显示故障代码;当系统出现空仓或圆盘给料机堵料而无法下料时,工艺流程画面也以警示色提醒用户,出现声音报警,提醒用户及时处理。
2.5 其他功能
能对变频器进行自动/手动切换及机旁自动/手动选择。
3 控制原理
3.1 配比控制
由于给煤量的大小取决于多种工艺参数和检测结果,给煤任务来自于上位机的配比计算,计算机采用配比数学摸型,它是根据配煤总量和各种煤所占的比例,及所含有的水份等参数,结合配比专家知识和现场经验,计算各种煤的liuliang设定值,作为进行指导和校正的手段。这里可输入各种煤的成份,检验结果等信息,制定配煤方案,下达配煤命令。
3.2 自动调节过程
它是通过取消小皮带,并在集料皮带下直接安装核子秤,可实时取得各种给煤liuliang反馈值的电压信号(0~30mV),经变送器放大,并转换为4~20mA的电流信号,送至可编程控制器的A/D转换接口,经采样后,与上位机设定的各种配煤给定值进行比较,进行调节运算,其控制量经D/A转换接口送至变频调速器,以此来改变变频器的输出值,从而改变圆盘给煤机的转速,调整给煤量,使之与设定值相等,完成自动配煤过程,下煤量设定值的大小决定了圆盘转速,圆盘转速与下煤量成正比。
3.3 控制规则
(1) 若控制误差的值太大,则增加输出量,加强控制作用,实现快速跟踪调节;
(2) 若控制误差及其变化率均在允许范围内,则输出量不变,维持原控制作用;
(3) 若控制误差与其变化率的符号(如控制误差为正,而其值却在减少),且误差变化率相对于误差较小,则要加强控制作用;
(4) 若控制误差与其变化率的符号且误差变化率相对较大,则加入“微分控制”;
(5) 若控制误差与其变化率符号且二者值相近时,维持原有控制;
(6) 若控制误差与其变化率符号相同,误差增大趋势,则采用“比例、积分、微分”控制,增强控制作用。
4 系统实现的功能
4.1 PLC实现的功能
实现各配煤机的启动和停止;电机、皮带的顺序控制;配煤liuliang的瞬时、累计liuliang的计量;圆盘速度的自动控制,实现配料自动控制。
4.2 上位机功能
它能与PLC之间实现数据、信号传输通讯;每个圆盘下煤量设置;每台秤的称量值显示;配煤称量系统画面监视;圆盘运行情况监视;故障显示及报警;可作为PLC的编程器使用;根据配料模型实现配比自动计算功能;历史趋势显示,可查看任意时间段的生产数据曲线,分析生产情况;生产报表;从动态数据库中提取数据,生成各种报表,进行打印。
5 核子秤计量部分
根据焦化厂备煤车间现有的配煤计量设备PDS-7微机电子皮带秤已使用十多年,存在着设备老化,可靠性差等若干问题,直接影响着配煤比的精度。这里应采用目前国际上比较流行的核子皮带秤,核子皮带秤与传统的电子皮带秤相比具有许多优点,其中主要的是不受皮带磨损、张力、振动、跑偏、冲击等因素影响,能长期稳定可靠地工作,值得一提的是它可在高温、多尘、强电磁干扰、强腐蚀等恶劣环境下可靠运行。
5.1 核子皮带秤工作原理简介
核子皮带秤的工作原理如图3所示,放射源在上方稳定地放射出g射线,在支架构成的平面内呈扇形照射至输送机上,输送机上的物料吸收一部分g射线,其余的射线照射至g射线探测器上,因射源发出的g射线为一常数,探测器探测出的g射线的多少,可反映出输送机上物料的多少,由此再根据相关的计算公式便可计算出某一时刻输送机输送物料的liuliang。
此方案的特点是核子秤的测量信号没有经过运算处理直接送入PLC系统,PLC系统需将核子秤的测量信号0~5V,或者是频率信号加以转换,进行相应的运算处理,才能得出秤重值,它的主要优点是省掉了二次仪表,降低了费用。
图3 核子皮带秤的工作原理图
5.2 技术要求及防护要求
(1) 秤体采用不锈钢体,秤体的安装对皮带传输装置的运转水平不生产任何影响,不改变其结构;
(2) 每台核子秤的每次配煤精度优于1%;
(3)本系统一机带14台核子秤的硬件配置方式,必须满足多物料、多品种配煤工艺,提供料选、配比等人机对话,自动切换等功能。具有统计配煤量、报表、打印、校准、故障诊断等功能;
(4) 工控机必须设有专用接地极且接地电阻<4W。
6 结束语
本系统实现了14台圆盘配煤机的启停、联锁保护、称量及调节的自动控制,实现配煤生产自动化。控制方式采用自动和手动操作两重方式,在自动方式下,各配煤回路的设定及控制,配煤的在线更改等都由计算机自动完成;在手动方式下,根据核子秤测量的值手动调节圆盘转速,进行配煤控制、人工启停设备,在这两种方式下,都设有主要设备紧急停运按钮。通过改变变频器输入信号方式,可方便地进行手动/自动切换,切换冲击小,生产进行顺利。
该系统在实际生产中取得良好的经济和社会效益,能够满足各项经济技术指标,满足控制精度要求,具有广阔的应用前景