6ES7231-7PC22-0XA0型号齐全
1、概述
本文介绍大连实德银川基地混料自动控制系统,采用德国西门子公司的S7可编程序控制器,成功应用于大连实德银川基地混料系统生产线。
大连实德银川基地混料系统的生产过程全部由可编程序控制器S7-300完成,即将生产工艺配方输入到系统监控配方程序中,由称重计量仪器动态检测电子称称重传感器的信号,并将控制信号传送给可编程序控制器,再由可编程序控制器产生各执行机构的控制命令来实现混料生产的自动化,tigao混料各配方原料的准确性和生产效率。
2、系统功能
混料系统的主要功能是多种原料经过送料系统进入料仓以后,按照生产配方给定的原料配比从各料仓加到电子称中进行计量称料,再送入热冷混料机组中混合搅拌,并相应控制物料混合搅拌时的温度,以保证物料混合均匀和混合料的特性达到生产工艺要求,后将混合好的混合料送入干混料仓内,以供型材挤出机生产线使用。
混料系统需解决的主要问题包括:
(1)实时采集各电子称称重传感器的称重信号。
(2)根据称重信号和生产配方产生罗茨风机、电磁旋转阀、电磁碟阀等的控制信号。
(3)动态检测和处理混料过程中可能出现的各种故障。
(4)下位机和上位机的通讯
(5)上位机的集中监控。
混料时,称重仪器选用的是莱梅特RWA-AD模数转换模块,可以设置和定制参数,采集称重传感器信号,输出数字信号。借助配方给定的原料配比产生执行机构的控制命令,并通过可编程序控制器控制各辅料罐的螺旋送料器、电磁阀和混料机组阀门的起停和开闭。通过检测电机保护装置,阀门位置开关状态获取电机、阀门的运行和故障情况,并可在工控电脑显示屏上进行监控。
3、可编程控制器系统组成
系统组成按站点划分。混料机组独立控制,与整个混料系统建立基于ProfiBus 通讯。
站1:为上位机,采用西门子工控机;CPU为2.4G,内存为256M,采用以太网与系统PLC连接。采用WEBfactory组态形成监控图形。
站2:1号混料机组PLC,使用一台西门子S7编程器。上位机采用ProTool组态,PLC和SIMATICOP27通讯连接,监控混料机组运行。
站3:2号混料机组PLC,使用一台西门子S7编程器。上位机采用ProTool组态,PLC和SIMATICOP27通讯连接,监控混料机组运行。
站4:3号混料机组PLC,使用一台西门子S7编程器。上位机采用ProTool组态,PLC,监控混料机组运行。
站5:挤出现场PLC。采用西门子S7-215,共4组。用于控制挤出生产线四条绞龙运行和SIMATICOP7通讯连接用于现场控制。与整个混料系统PLC采用基于ProfiBus 通讯。总系统采用站1监控。
4、基于ProfiBus DP通信
PROFIBUS现场总线是国际性的开放性现场总线标准,是一种符合IEC61158标准的现场总线。PROFIBUS-DP经过优化的高速、廉价的通信连接,是专门用于自动控制系统和设备及分散的I/O之间的通信网络。PROFIBUS-DP用于基础控制层的高速数据传送,主站周期地读取从站的输入信息并周期地向从站发送输出信息。PROFIBUS-DP的上述特点使其在工业电气自动化领域占据了重要的地位。
本系统中ProfiBus DP总线完成PC与各设备之间的通信,并采用主从方式通信:主机(S7-416-2DPPLC)作为ProfiBus DP主站,以轮询方式对下属各从站(如ET200S﹑S7-300PLC等)进行定周期扫描和读写。主机通过ProfiBusDP总线将指令传送到对应的数据区,并将各设备返回的状态信号从对应的数据区取出,从而实现对下属每个设备的监控。
5、系统监控通讯配置图
6、系统监控通讯程序
Network 4 S7 connecting
CALL "MX1.1_connect" //连接1#混料机组PLC
CALL " MX2.1_connect" //连接2#混料机组PLC
CALL " MX3.1_connect" //连接3#混料机组PLC
CALL "image: MX1.1"
CALL "image: MX2.1"
CALL "image: MX3.1"
CALL "image: S31- 32"
CALL "image: S33- 34"
Network 5 Control Signals PC (VISU) -> PLC
CALL "image: S11-16"
CALL "image: S17-22"
CALL "fc_pc_flags_set"
Network 6 Control Signals PC (Prisma) -> PLC
CALL "fc_pc_flags_set"
7、结束语
混料系统控制构成复杂,控制任务多,逻辑繁琐。即要实现对现场各控制点的控制和监控。又要完成现场各种数字量、开关量的检测以及对周边设备,如各种运行电机和风机的控制。采用功能强、安全系数高的德国SIEMENSSIMATICS7系列可编程序控制器,整个控制系统完全满足混料系统控制工艺要求,实现了混料自动控制以及送料全过程的协调控制,系统性能好,操作使用方便。确保生产任务正常完成。
经过一段时间的运行,宁夏实德新型建材有限公司混料系统正常运行,可靠性高。维护方便,大大tigao了生产效率。
1引言
目前,在工厂供电系统中,对高压断路器的控制、保护和信号回路多采用传统的继电器开关量控制方式,存在着元件多,接线繁琐,运行维护工作量大,故障多,控制自动化程度低,可靠性差等诸多问题。而PLC作为继电器控制的替代产品,具有可靠性高、抗干扰能力强、编程简单、维护方便、适应环境好等等优点,利用PLC对断路器二次回路进行控制无疑是较好的选择。
2断路器操作与二次回路
2.1断路器控制、保护和信号回路(简称二次回路接线)
断路器控制、保护和信号回路电路接线如图1[1]所示。QF为断路器,TA为电流互感器,KA为电流继电器(GL-15、25型),KM为中间继电器,WC为控制小母线,WS为信号小母线,WAS为事故信号小母线,SA为控制开关,SB为按钮,RD为红色指示灯,GN为绿色指示灯,YO为合闸线圈,YR为跳闸线圈,SQ1、SQ2为储能位置开关,M为储能电机。
2.2断路器控制、保护和信号回路基本要求
图1为采用CT7型弹簧操作机构的断路器控制、保护和信号回路,SA可采用LW2或LW5型转换开关,其控制的基本要求如下:
(1)只有当储能电机储能完成,才能进行合闸操作。
(2)QF正常工作时,应是红灯亮,绿灯灭,并分别起到监视跳闸和合闸回路的完好性。
(3)当过电流保护装置检测到过电流信号时,应立即启动跳闸装置跳闸。
2.3控制电路工作原理
图1中,SA为LW2或LW5型转换开关,它们的触点有合闸、合闸后、分闸、分闸后四个位置。SA的3-4触点只在合闸时接通,合闸后断开;SA的1-2触点只在分闸时接通,分闸后断开;SA的9-10触点在合闸和合闸后均接通。SQ1和SQ2是弹簧储能电机的位置开关,未储能时处于初始状态。
需要合闸操作时,须先进行弹簧储能:按下SB按钮,储能电机M通电运转,使合闸弹簧储能,完毕后,SQ2常闭触点断开,SQ1常开触点闭合,为合闸作准备。
合闸时,将SA扳向合闸(ON)位置,其3-4触点接通,合闸线圈YO通过较大电流,操作机构使QF断路器合闸,其辅助触点使YO线圈失电,并使RD红灯点亮。
分闸时,将SA扳向分闸(OFF)位置,其1-2触点接通,分闸线圈YR通过较大电流,操作机构使QF断路器分闸,其辅助触点使YR线圈失电,并使GN绿灯点亮。
当一次电路发生短路时,KM1或KM2线圈得电,其常开触点闭合,也使YR通过较大电流而让QF断路器跳闸,随后QF的3-4触点断开,RD灭,并使YR失电。由于QF是自动跳闸,SA仍在合闸位置,SA9-10触点闭合,发出事故信号,通知值班员将SA扳向分闸位置,并使事故信号解除。
3断路器操作PLC控制系统
3.1PLC电气原理设计
断路器控制、保护和信号回路的PLC的I/O点分配如图2所示。PLC采用FX2N-32MR型,共须用7个输入点,6个输出点。标注情况如图2所示。SA为普通的手动转换开关,H为事故报警信号。
3.2PLC的程序状态转移图
由于该控制电路为顺序控制电路,根据其基本控制要求,并对照PLC的输入输出接线图,即可绘出PLC控制的程序状态转移图如图3[2]所示。
3.3PLC控制的梯形图
PLC控制的梯形图如图4所示:
需要合闸操作时,须先进行弹簧储能:按下SB按钮,X4=1,使Y3=Y4=1,GN绿灯亮,储能电机M通电运转,使合闸弹簧储能,为合闸作准备,完毕后,SQ1和SQ2常开触点闭合,Y3=0,电机M停转,由于仍在分闸位置,GN灯应保持亮。
合闸时,将SA扳向合闸位置,其常开触点接通,X1=1,使Y1=Y4=1,合闸线圈YO通过较大电流,操作机构使QF断路器合闸,合闸后,QF的常开辅助触点使Y5=1,RD红灯点亮。
分闸时,将SA扳向分闸位置,其常开触点断开,X1=0,X3=1,使Y2=Y5=1,分闸线圈YR通过较大电流,操作机构使QF断路器分闸,分闸未完成,RD红灯仍亮,分闸后GN绿灯点亮。
当一次电路发生短路时,KM1或KM2线圈得电,其常开触点闭合,X6=X7=1,使Y2=Y6=1,也使YR通过较大电流而让QF断路器跳闸,由于QF是事故跳闸,应发出事故信号,通知值班员将SA扳向分闸位置,并使事故信号解除。
4 结束语
断路器控制、保护和信号回路采用PLC控制,与继电控制相比,可靠性高、调试方便,具有良好的应用前景,值得推广应用。
1 引言
电动机的应用几乎涵盖了工农业生产和人类生活的各个领域,在这些应用领域中,电动机常常运行在恶劣的环境下,导致产生过流、短路、断相、绝缘老化等事故。对于应用于大型工业设备重要场合的高压电动机、大功率电动机来说,一旦发生故障所造成的损失无法估量。
电动机常见的故障可分为对称故障和不对称故障两大类。对称故障包括:过载、堵转和三相短路等,这类故障对电动机的损害主要是热效应,使绕组发热甚至损坏,其主要特征是电流幅值发生显著变化;不对称故障包括:断相、逆相、相间短路、匝间短路等,这类故障是电动机运行中常见的一类故障。不对称故障对电动机的损害不仅仅是引发发热,更重要的是不对称引起的负序效应能造成电动机的严重损坏。对大型电动机进行综合保护非常重要。
2基于PLC的电动机综合保护
对电动机的保护可以分为以下几类:
在电动机发生故障时,为了保护电动机,减轻故障的损坏程度,继电保护装置的快速性和可靠性十分重要。在单机容量日益增大的情况下,电机的额定电流可达数千甚至几万安,这就给电动机的继电保护提出了更高的要求。传统的继电保护装置已经无法满足要求,微机保护应运而生。
PLC是用来取代传统的继电器控制的,与之相比,PLC在性能上比继电器控制逻辑优异,特别是可靠性高、设计施工周期短、调试修改方便、体积小、功耗低、使用维护方便。本文研究了基于可编程控制器(PLC)的电动机综合监控和保护系统的方法。
3系统硬件设计
3.1系统的总体结构
基于可编程控制器(PLC)的电动机综合监控和保护系统的总体结构如图1所示。
3.2PLC机型选择及扩展
选择PLC机型应考虑两个问题:
(1)PLC的容量应为多大?
(2)选择什么公司的PLC及外设。在本系统中,包含以下输入输出点,见附表,本系统共包括12路开关量,7路模拟量。
SIMATICS7-200系列PLC是由西门子公司生产的小型PLC,其特点是:SIMATICS7-200系列PLC适用于各行各业,各种场合中的检测,监测及控制的自动化,S7-200系列的强大功能使得其无论在独立运行中,或相连成网络皆能实现复杂控制功能,S7-200系列具有极高的性能/价格比。
S7-200 CPU224集成14输入/10输出共24个数字量I/O点,可连接7个扩展模块,大扩展至168路数字量I/O点或35路模拟量I/O点;13K字节程序和数据存储空间;6个独立的30KHz高速计数器,2路独立的20KHz高速脉冲输出,具有PID控制器;1个RS485通讯/编程口,具有PPI通讯协议、MPI通讯协议和自由方式通讯能力;I/O端子排可以很容易地整体拆卸,是具有较强控制能力的控制器。根据系统的实际情况,结合以上特点,SIMATICS7-200 CPU 224完全可以作为本系统的主机。
CPU224可扩展7个模块,而其本身具有14输入/10输出共24点数字量,已无须数字量扩展模块。但由于有7路模拟量输入,故需选择模拟量输入模块。S7-200系列提供了EM231,EM232,EM235等模拟量扩展模块。根据以上技术数据,选择两个EM231作为模拟量输入模块,这样共可以扩展4×2=8路模拟量输入。
4系统软件设计
4.1主程序
程序开始,从输入单元检测输入量,判断KM是否闭合,如果闭合,说明电动机已经处于运行状态,此时应无法按下启动按钮,若KM未曾闭合,则说明电动机处于停机状态,可以按启动按钮。接着判断启动按钮是否按下,若是,则继续下面的程序,若否,则重新检测。如果按钮已经按下,则检测电动机是否启动,若是,则继续下面的程序,若否,则转入欠压保护子程序,若是电动机已经启动,则判断起动是否成功,若是,则继续下面的程序,若否,则转入起动保护。如果电动机已经正常起动,则绿灯亮。接着判断停止按钮是否按下,若否,则继续下面的程序,若是,则程序直接结束,开始下一次扫描。
如果停止按钮并未按下,即电动机仍然在运行中,则进行运行过程中的故障判断,检测是否发生短路故障,方法是:检测三相电流,再判断Imax是否大于整定值,若是则跳转至保护动作子程序段,电动机起动短路保护,警报响,并且短路故障指示灯亮。若否,则继续下面的程序。接着判断是否发生断相故障,方法是:检测三相电流,判断是否有某相电流为零,或者检测Umn,判断是否不为零,如果其中之一满足,则跳转至保护动作子程序段,电动机起动断相保护,警报响,并且断相故障指示灯亮。若否,则继续下面的程序。接着判断是否发生欠压故障,方法参见欠压保护子程序说明。接着判断是否发生接地故障,方法是:检测I0,若大于整定值则跳转至保护动作子程序段,电动机起动接地保护,警报响,并且接地故障指示灯亮。接着判断是否发生过负荷故障,方法是:检测三相电流,若到达整定时限后,电流仍大于整定值,则跳转至保护动作子程序段,电动机起动过负荷保护,警报响,并且过负荷故障指示灯亮。若判断未发生过负荷故障,则程序完成一次扫描,从条开始,进行第二次扫描,结束是指一个循环的结束,并不是整个程序的结束。
4.2欠压保护子程序
在该程序段中,采集A相和C相的电压量,求出其平均值,再与整定值相比较,若小于整定值,则跳转至保护动作子程序段,电动机起动欠压保护,警报响,并且欠压故障指示灯亮。若未发生欠压故障,则直接结束本次循环。
4.3起动时间过长保护子程序
在该程序段中,采集三相电liuliang,若发现在起动过程中,电流大于整定值,或在整定时间到达后,电流仍大于另一整定值,则跳转至保护动作子程序段,起动时间过长保护动作,警报响,并且起动故障指示灯亮。
5结束语
通过本系统设计、试验与运行,得到如下结论:
(1)利用PLC进行电动机综合保护硬件简单可靠。
(2)可以采用梯形图语言进行编程,简单易行。
(3)系统运行可靠,便于检修维护。
(4)由于采用集成综合设计,系统体积小、功耗低、使用操作方便