西门子模块6GK7243-1EX01-0XE0型号齐全
1、引言
细纱工序是成纱的后一道工序,是将粗纱牵伸30~50倍并加捻,纺成具有一定特数、符合相关质量标准的细纱,供捻线、机织或针织使用。纺织厂生产规模的大小是以细纱机总锭数表示的;细纱产量是决定各工序数量的依据;细纱的质量水平、原料物料耗电量等指标、劳动生产率等是技术和管理水平的体现,细纱工序在纺织厂中占有重要的地位。
传统细纱机的牵伸原理与粗纱机基本相同,而卷绕和加捻则是由钢领和钢丝圈来完成的,称为环锭细纱机。环锭细纱机和传统粗纱机一样由一台电机传动,通过齿轮箱变换各机构需要的速度。在环锭细纱机各组成部分中,牵伸系统是反映细纱机性能和影响纱线质量的关键因素,而新型的紧密纺纱技术通过对牵伸部分进行创造性改造,将牵伸区和集合区分离,在环锭纺罗拉牵伸与加捻之间叠加对纤维须条的气动凝聚或集聚技术,增加了须条的紧密度,毛羽减少约20%,强力则提高约10%,条干均匀度、机器效率等也有不同程度的提高,不仅可以降低加工成本,可以减少后加工工序。紧密纺的另一优点是与原细纱机完全一致,只多出一对集聚罗拉,在原环锭细纱机上也可进行改装,具有广阔的市场前景。
紧密纺细纱机的控制系统较环锭细纱机复杂许多,是前后罗拉的严格同步,实现牵伸倍数和捻度的精密控制,保证高支数纱线的成纱质量;是通过取消钢领板的传动齿轮,采用先进的伺服控制技术实现卷装的电子成形技术,从而实现了机械机构的简化、生产速度的提高、以及纱线支数和管纱成形的自动调节。
2、控制系统方案
在紧密纺细纱机的控制系统,我们采用了三套施耐德电气公司的TwinLine系列伺服驱动系统和无刷伺服电机,分别控制前、后罗拉以及钢领板;采用两台ATV31系列变频器,分别控制主传动电机和风机;整个系统采用MicroPLC控制,采用XBT-G 5.7”黑白触摸屏进行系统操作和监控。
3、控制系统简介
Micro系列PLC是施耐德电气公司推出的具有强大处理能力和较大的存储空间的中小型PLC(I/O点多256点),采用灵活的模块化设计,结构紧凑,为要求精密功能(PID调节、高速计数、jingque定位、人机对话等)的复杂机器提供经济型的解决方案。MicroPLC内置人机界面接口和多种通讯扩展接口,易于实现与其它设备的连接;高密度的应用(64点I/O模块等)使MicroPLC成为紧凑的控制器。
Micro PLC编程软件与PremiumPLC兼容,具有中型PLC同样的通讯语句、PID调节语句、各种运算语句等精心设计的功能函数,和在线修改等高性能的调试诊断工具,极大地丰富了MicroPLC的应用范围,减少了系统设计的时间。
Twin Line系列是施耐德电气公司推出的宽范围的伺服驱动器和无刷伺服电机产品,集成了先进和优化的无刷电机控制技术,并具备IEC61131-3标准的编程功能和各种开放的接口,通过脉冲/方向、I/O或现场总线等方式控制,电机功率范围为0.3~13.8Nm,速度范围为4500~12000 rpm,可以灵活满足各种实时应用要求,实现经济化、智能化的应用解决方案。
通过Micro PLC准确的运算和高精度的模拟量输出,控制TwinLine系列伺服系统,可以实现紧密纺细纱机所要求的前、后罗拉精密同步、以及钢领板电子成形;MicroPLC的内存扩展功能也为紧密纺细纱机控制所需的大容量数据存储区提供了有力的保障。
ATV31系列变频器是新推出的、ATV28系列变频器的升级产品,功率范围从0.18~15kW,有6个逻辑输入口、3个模拟输入口、1个逻辑/模拟输出口和2个继电器输出口。ATV31系列变频器具有可靠性高、结构紧凑、便于使用等特点,内置A级EMC滤波器,集成了Modbus和CANopen两种工业现场总线,提供电机和变频器保护、加/减速斜波、16段预置速度、双极(±10V)信号给定、PI调节器、制动顺序、以及横动控制(TraverseFunction)等众多功能,可以很好地满足各种机械的应用要求。
4、细纱的电子成形控制
细纱的管纱如右图所示,分管顶、管身和管底三个部分,卷绕形式采用圆锥形交叉卷绕形式(又称短动程升降卷绕),同一层纱各处的卷绕直径不同,以实现退绕时纱可从管顶抽出而管体不转动,适应高速退绕的目的。
卷绕成形运动由两个运动组合而成:
·圆周运动:电动机通过锭带拖动筒管恒速转动
· 轴向移动:钢领板短动程升降运动引导纱在卷绕面上均匀分布
其中:
·卷绕转速(nW)=锭子转速 - 钢丝圈转速 ? v/(pdx) (v:前罗拉线速度,dx:筒管的卷绕直径)
· 钢领板升降速度(vR)== D * nW (D:卷绕节距)
在细纱的电子成形控制中,采用伺服系统控制钢领板短动程升降运动,根据前罗拉的出线速度和纱线的粗细度设定卷绕节距和成形高度,计算出纱线在管身和管底卷绕所须的钢领板升降速度;通过编码器检测钢领板的位置,由PLC输出相应的速度信号给伺服系统,实现细纱的电子成形。
5、结束语
本系统采用施耐德全套解决方案,具有以下几大优点:
(1) 人性化的编程软件,减少了客户工作量。
(2) 优化的闭环控制系统,降低成本,提高了质量。
(3) 由于成形时,要求纲领板的速度始终在变化,要求PLC具有快速运算能力及输出,MicroPLC运算指令丰富,支持浮点数运算,能够快速及时地控制纲领板的速度,以保证成形精度。
(4) Micro 高速计数可达500KHZ,能够满足高精度测速的要求。
1、前言
我们都知道,使用传统的普通平头设备的进行工件的平头操作,平头面的光滑度和平面度,会受到刀具的jingque程度以及操作人员的熟练程度等诸多因素的影响。鉴于存在这种问题,我们研制了数控平头机,它可以按照输入的进刀曲线连续工作,始终保持高精度和高效率,从而充分保证平头质量。
2、控制要求
数控平头机控制要求为:
(1)控制系统应可调整刀头加工程序;
(2)不同的加工阶段可以选择不同的加工速度和加工深度。空程的时候的进刀曲线如图1所示,加工时的进刀曲线如图2所示;
(3)主轴转速应可调节,且范围应宽广;
(4)加工jingque度高,加工材料平面的光滑度要求为Ra≤1.6μm;
(5)定尺尺寸精度:±0.5mm
图1 空程时进刀曲线
图2 加工时进刀曲线
3、系统的硬件设计
根据系统的控制要求配置硬件如下:
可编程控制器:1个西门子公司的S7-200系列CPU222PLC;
人机界面:1个DP210;
外设:2个步进电动机、2个步进电机驱动器、2个三相电动机、1台变频器、1个EM222、8个电磁开关、4个光电传感器和1个霍尔传感器。
3.1 系统的I/O点分配
由硬件结构图可知,系统需要5个输入点和14个输出点.CPU222PLC有8个输入点和6个输出点,需要增加一个扩展模块,选用8点输出的数字量扩展模块EM222.输入点是I0.0-I0.7;输出点是Q0.0-Q0.5和Q1.0-Q1.7,分配情况见下表1和表2:
表1 输入端子分配表
表2 输出端子分配表
3.2 控制器
系统的关键的设备部分是PLC。PLC是以单片机为核心专门用于工业过程自动化控制的电脑器件,具有极高的可靠性和稳定性。本系统选用西门子公司的S7-200系列CPU222PLC作为控制的核心,利用CPU222的2路独立的20KHz的高速脉冲输出来控制步进电动机的运动。此高速脉冲信号不能直接驱动步进电动机,需通过步进电机驱动器将功率放大后才能起作用。5路数字量输入分别与5个传感器相连接,用来判断步进电机的位置、工件的位置、刀头的位置。14路数字量输出中,有6路用来控制步进电机驱动器,8路用来控制电磁阀开关。
PLC本机有一个通讯口,为标准的RS-485借口,在PLC与上位机进行通讯时需将RS-485接口转换成标准的RS-232接口,可以采用四门子提供的隔离型PLC/PPI电缆进行转换。该电缆有拨码开关可以进行设置。在上位几上将控制软件编写好后,通过此线下载程序并监视程序的运行情况。为了降低成本,在程序调试好以后就可以不必用上位机进行操作和控制,而是用简单的操作面板即可。本系统选择是DP210操作面板。
3.3 系统的外设
根据系统对刀具加工精度的高要求,选用步进电机来控制加工程序。步进电机可以jingque到一个脉冲,在本系统中一个脉冲的精度是0.005mm。步进电机驱动器用于驱动步进电机,从而控制刀头的动作,完成平头。步进电机驱动器接收到PLC的信号,包括CP步进脉冲信号,DIR方向信号,FREE脱机信号,经过其内部的功放电路和处理电路后输出到后面连接的两相步进电机。步进电机根据信号的编号来产生相应的动作。电磁阀直接接受来自PLC的控制信号产生动作。PLC直接接受传感器的信号,通过内部程序的运算和逻辑判断来决定输出。
变频器用来控制主轴三相电机的转速。本系统中变频器采用基本参数运行模式,由电位器来设定运行频率,变频器的启动和停止由外部端子控制.根据不同工件的特点,通过旋转电位器来改变主轴电机的转速,外部端子的信号由PLC的第12路数字量输出控制。
4、系统的软件设计
系统的软件包括人机交互界面DP210程序和系统的主控程序。DP210程序完成操作人员同PLC之间的对话,主要是各个操作画面之间的相互转换和每个操作画面当中各个按键动作所对应的PLC程序的控制位。程序画面要与生产现场的工作流程相适应,越是前面的画面就越是使用率高的画面。
PLC程序接收到DP210的操作信号后,按照工作要求进行整个刀头工作的控制。主程序的流程图如图3所示。PLC主控程序中的核心控制是对步进电机的控制,启动1#步进电机的程序如图4,控制电机方向的程序如图5。
图3 主程序流程图
图4 1#步进电机启动程序
图5 1#步进电机方向选择程序(2#步进电动机的运动控制类似1#步进电动机)
5、结束语
本文所设计的系统操作简单,加工产品范围广,加工精度高,已经成功应用于生产实践中。该平头机目前已经在某材料生产厂进行规则几何体的平头。自从开始生产以来,该系统运行稳定,产品质量显著提高,废品率明显下降。极大的减轻了操作人员的劳动强度,提高了生产效率,还可以用于其它器件的平头。我们设计一定范围内的刀头尺寸以适应不同工件尺寸的平头动作,且具有可更换功能。
1. 前言
随着社会的发展,人们的生活水平有了极大的提高,现代交通工具家庭式轿车也逐渐进入千家万户,但受到土地的限制,停车场的数量有限,立体式自动化停车库引入市场,提高了土地利用率及空间利用率,做到有限的土地可以更多的停放车辆。
2. 停 车 库 简 介
图1数控定子绕线机外观
升降横移式立体车库以“安全、快捷”著称,配备完善的安全装置及其运作系统,实现存取车的快捷,整体效果优良。
升降横移式立体车库的运行原理是取上层车时,将下层车板移开留出空位。该设备下层为左右横移,上层为上下升降。该设备可根据客户的场地及需要,实现2-6层的多车位设计。由于升降横移类停车设备规模可大可小,对场地的适应性较强,以少的投资获取具价值的回报。采用这类设备的停车库十分普遍。
该类车库特点:
● 模块化设计,车位数从几个到上百个均可采用。可以在地面及地下停车场使用,也可设计成半地下形式,使用形式灵活,造价较低;
● 充分利用空间,可数倍提高停车数量;
● 系列化、标准化设计,结构合理,多种保护装置,安全可靠;
● 布局灵活,组合方便,可采用多种型式,形成大型停车场。
● 适应性强,地上、地下均可建造,可作2-6层,可多种单元组合,既有单列式,又有重列式。
● 电动钢索(或链条)式升降驱动系统,运行平衡可靠;
● 操作方式自由可选择:按钮式、触屏式、刷卡式;
● 广泛适用于办公写字楼、居民集中住宅区等处的地下室停放车辆; 可充分利用地下室的有效空间高度和柱间距宽度来布置停车位。
● 多层升降横移式停车设备,可以创造多层停车位,就同类型设备而言,空间利用率高。
● 直接于地面空地架设,布置较为简单,工期施工短。
● 整体设计与楼面容为一体,美观大方。
● 安全系数大,系统具有以下安全保护装置:防坠落装置、紧急停止按钮、超限运行防止装置、前面光电开关、超高报警装置。
3电 源 及 负 荷
本文介绍的立体停车库是三层三列七车位升降横移式停车库,也是多车位立体停车库的雏形,全线共有一个电控柜,外设按钮站,操作及维护简单,安全可靠性高。
电气控制系统主电路供电为三相四线制AC380V,控制回路用单相220V供电,信号电路由PLC可编程控制器本身提供DC24V供电。全线主要电控设备负荷如下(总负荷约22KW):
2.1 车盘横移电机 4X0.4KW
2.2 车盘升降电机 5X3.7KW
3机 构 工 位 简 述
3.1 横 移 输 送 机 构
横移输送包括横移输送小车(升降固定架)及车盘,车盘是承载车的装置,共有4台可以进行横移,层有两台,第二层有两台,这两层各有一个空车位,供车盘左右横移之用,横移输送小车及车盘左右横移的动力源是横移输送电机。左右横移终点有限位开关进行定位保护,极点有机械死挡块保护。
3.2 升降输送机构
升降输送机构包括升降固定架及车盘,车盘是承载车的装置,共有5台车盘可以进行升降,第二层有两台,第三层有三台,车盘升降的动力源是升降电机。升降到位有限位开关进行定位保护。
4.PLC应用
PLC(Programmable LogicalController)即逻辑可编程序控制器,它是一种数字运算操作的电子系统,专为在工业环境下应用而设计,它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算、顺序控制、定时、计数和算术操作等面向用户的指令,并通过数字式或模拟式输入输出控制各种类型的机械或生产过程。
PLC在现代控制系统中已普遍为电气设计人员所采用,PLC不仅给设计人员带来了控制上的可塑性,同样给机修人员的维修带来了极大方便。
本停车库即采用了台达DVP60ES00R2继电器输出型的可编程控制器。扩展机DVP08XM11N+DVP08XN11R,输入输出总点数为76个,其中IN点为44个,OUT点为32个,电源为AC220V输入,交流有接点输出。
该停车库的运行是通过相应限位开关的动作来自动循环的,各限位开关之间的安全联锁已通过程序的编制做到充分考虑。按程序编制取车操作过程如下:
规定从左至右层依次为101、102、103车位,第二层依次为201、202、203车位,第三层依次为301、302、303车位,面向车库层左边为101车盘,层右边为102车盘,第二层左边为201车盘,第二层右边为202车盘,第三层由左至右分别为301、302、303车盘,车位与车盘要区别开来。
4.1 开机准备:
接通电源,将电控柜的左侧面电源控制开通主空气开关闭合接通,电柜有电到,电源指示灯亮。
4.2 手动操作:
将电柜的(自动 停手动)转换开关置于“手动”位置,按下“运行启动”按钮,相应指示灯亮,即可在电柜面板上选择相应的手动按钮及动作升降横移选择开关进行操作。
取车之前要保证各车位与车盘(车位与车盘的定义参见机构工位简述的规定)在相对应的位置上,即101车盘在101车位,其余类同,才能按照下面的操作方法进行操作,否则要根据实际情况进行相对应的手动操作。
4.2.1 取201车盘上的车,手动操作过程如下:
将“左移右移”选择开关扳到右移,按住102车盘按钮,直至102车盘行到103车位停止;再按住101车盘按钮,直至101车盘行到102车位停止。
将“上升 下降”转换开关扳到下降,按住201车盘按纽,直至201车盘降到101车位停止。开走所要取的车之后再进行如下操作。
将“上升 下降”转换开关扳到上升,按住201车盘按纽,直至201车盘升到201车位停止。
将“左移右移”选择开关扳到左移,按住101盘按钮,直至101车盘返回101车位停止;再按住102车盘按钮,直至102车盘返回102车位停止。
这样就完成了201车盘车位取车的手动操作全过程。
4.2.2 取202车盘上的车,手动操作过程如下:
将“左移 右移”选择开关扳到右移,按住102车盘按钮,直至102车盘行到103车位停止。
将“上升 下降”转换开关扳到下降,按住202车盘按纽,直至202车盘降到102车位停止。
开走所要取的车之后再进行如下操作。
将“上升 下降”转换开关扳到上升,按住202车盘按纽,直至202车盘升到202车位停止。
将“左移右移”选择开关扳到左移,按住102车盘按钮,直至102车盘返回102车位停止。这样就完成了202车盘车位取车的手动操作过程。
4.2.3 取301车盘上的车,手动操作过程如下:
将“左移右移”选择开关扳到右移,按住102、202车盘按钮,直至102车盘行到103车位,202车盘行到203车位停止;再按住101、201车盘按钮,直至101车盘行到102车位,201车盘行到202车位停止。
将“上升 下降”转换开关扳到下降,按住301车盘按纽,直至301车盘降到101车位停止。
开走所要取的车之后再进行如下操作。
将“上升 下降”转换开关扳到上升,按住301车盘按纽,直至301车盘升到301车位停止。
将“左移右移”选择开关扳到左移,按住101、201车盘按钮,直至101车盘返回101车位,201车盘返回201车位停止;再按住102、202车盘按钮,直至102车盘返回102车位,202车盘返回202车位停止。
这样就完成了301车盘车位取车的手动操作全过程。
4.2.4 取302车盘上的车,手动操作过程如下:
将“左移 右移”选择开关扳到右移,按住102、202车盘按钮,直至102车盘行到103车位,202车盘行到203车位停止。
将“上升 下降”转换开关扳到下降,按住302车盘按纽,直至302车盘降到102车位停止。
开走所要取的车之后再进行如下操作。
将“上升 下降”转换开关扳到上升,按住302车盘按纽,直至302车盘升到302车位停止。将“左移右移”选择开关扳到左移,按住102、202车盘按钮,直至102车盘返回102车位,202车盘返回202车位停止。
这样就完成了302车盘车位取车的手动操作过程。
4.2.5 取303车盘上的车,手动操作过程如下:
将“上升 下降”转换开关扳到下降,按住303车盘按纽,直至303车盘降到103车位停止。开走所要取的车之后再进行如下操作。
将“上升下降”转换开关扳到上升,按住303车盘按纽,直至303车盘升到303车位停止。这样就完成了303车盘车位取车的手动操作过程。
4.3 自动运行:
将电柜的"自动 停止 手动“选择开关扳到“自动”位置,“自动运行”指示灯亮。
当电柜面板“上升指示”“下降指示”“左移指示”“右移指示”指示灯亮时,可以自动运行取车。
假如要取201车盘车位的车,自动运行操作如下:
按一下201车盘按钮,201车盘自动调整到101车位停止,此时可以取车。
当取走所要的车后,无须做其他操作,空车位等待停车。
其他车位取车类同。只要按相应的取车车盘号按钮即可取到车。
4.4 停机:
4.4.1 正常停机
将电柜“自动 停止 手动”转换开关转向停止位,关闭电柜电源开关。
4.4.2 特殊停机:
4.4.2.1当发生特殊情况或故障需紧急停机时,按下急停按钮开关;
4.4.2.2排除故障,将急停按钮复位,用手动功能将各车盘复原始位。
4.4.2.3 按初始开机方法重新供电启动。
5:结束语
台达ES系列PLC在立体停车库上的应用已经得到设备厂家的认可,终用户反映良好