西门子6ES7241-1AA22-0XA0设置参数
控制特点
控制器:由Micro PLC实现整机的逻辑控制和参数计算,实现整机的优控制。
Micro系列PLC是施耐德电气公司推出的具有强大处理能力和较大的存储空间的中小型PLC(I/O点多256点)。通过Micro PLC准确的运算和高精度的模拟量输出,控制Twin Line系列伺服系统,可以实现紧密纺细纱机所要求的前、后罗拉精密同步、以及钢领板电子成形;Micro PLC的内存扩展功能也为紧密纺细纱机控制所需的大容量数据存储区提供了有力的保障。
人机界面:由触摸屏XBTG HMI实现纺纱参数的设定、显示和故障监控。
锭子和罗拉的变频调速(ATV71)
锭子利用变频器的多段速功能很好地满足了细纱的工艺要求,前后罗拉通过ATV71进行严格速度同步,实现对粗纱的精密牵伸。其主要优势在于能够根据落纱大、中、小纱的张力变化,实现自动无级变速,优化纺纱条件,以尽可能地保持纺纱各阶段的张力稳定,对降低断头,减少毛羽,实现优质高产,降低能耗和减轻值车工劳动强度都将起到积极作用。
ATV71系列变频器是施耐德电气公司推出的基于现代控制理论矢量控制技术的具有高性能和强大功能的全系列变频器。调速范围1~100(开环),1~1000(闭环);调速精度为10%(开环), %(闭环);过力矩能力为170%60s或220%2s。集成EMC A级滤波器,集成了Modbus和CANopen两种工业现场总线。
风机的变频调速(ATV31): ATV31系列变频器具有可靠性高、结构紧凑、便于使用等特点,内置A级EMC滤波器,集成了Modbus和CANopen两种工业现场总线。
图2 紧密纺细纱机锭子的多段速
细纱的成形:由伺服控制钢领板升降。
应用伺服控制器的电子凸轮功能, 预先下载两条曲线至伺服驱动器,在机器启动后,伺服接受信号输入启动凸轮曲线后两条曲线交替切换工作。用户可从人机界面上输入相关参数,通过通讯传到伺服相关参数可以修正曲线以适应不同的产品需求。关于停电后恢复生产的功能,电子凸轮提供实时读取当前主轴位置的功能,TLC6的内存区内可以提供若干断电记忆的变量区间,我们利用这些功能将断电前瞬间的位置记住,在恢复电源之后重新进行生产过程。
图3 钢领板升降电子凸轮曲线
自动落纱:由位置型伺服实现细纱的高速、、全自动落纱。
应用伺服控制器的(位置型) 点到点jingque定位,应用伺服控制器的内置编程功能实现停电时的位置记忆。
现场总线通讯:速率高达1M的CANopen总线。
CANopen总线是基于CAN BUS的高层协议,秉承了CAN总线的抗干扰性强、高速、实时的优点,CANopen应用PDO、SDO、NMT等通讯对象,方便了总线的管理和应用。施耐德的ATV31、ATV71及伺服系统TWLIN均内置了CANopen,将CANopen应用于多电机传动的紧密纺细纱机,不仅可获得高性能的总线通讯,非常经济。
Modicon M258施耐德PLC是一种结构紧凑、高性能和高可扩展性的PLC,它体现了施耐德电气的“灵活设备控制”理念。
施耐德PLC为设备生产商 (OEM) 而设计,主要面向如包装、物料传输、仓储、纺织以及木工机械设备等应用,为速度控制、计数、轴控制提供高性能的电气控制解决方案。
模拟量功能
对于需要处理来自于模拟量传感器/执行器(电压或电流),温度传感器或PID控制传感器数据功能的设备,Modicon M258运动控制器提供了完整丰富的扩展模块 (“一体化”或“切片式”) 以及编程功能。
为了尽量减少设备的型号数量,缩短装配时间和降低成本,所有型号为TM258 L●●●●4L的M258 可编程控制器都标配4路电压或电流模拟量输入(12 位分辨率)。
可提供2、4或6通道以及12或16位分辨率的不同扩展模块。
M258可编程控制器性能强大,能够连接多达200个模拟量I/O和/或温度模块,从而减
少了对设备需求的限制。
高速计数器功能 (HSC)
为了满足设备生产效率要求,Modicon M258 可编程控制器内置8路高速计数,以及4个反射输出,每通道计数频率达到200 kHz。TM258L F●●●●控制器配备的内置高速计数和 CANopen主站现场总线使之能够快速、轻松地提供成本低廉、高性能的多轴功能,大限度地提高设备的生产效率。
SoMachine V2.0软件中提供了专门为运动控制功能而设计的PLCopen功能块,可以确保快速、可靠地开发应用程序。
多样的高速计数模块可供您选择,使您的配置灵活适应设备的特定需求。
位置控制功能
在位置控制方面,可提供多种选择:
□创建 Lexium 32 伺服驱动器控制序列,通过使用离散量 I/O 实现与 M258 可编程控制器之间的通信
□或创建 M258 可编程控制器应用程序,并通过 TM258L F●●●本体集成的CANopen现场总线主站控制 Lexium 32伺服驱动器和/或 SD3●●步进。
通信功能
以太网
所有M258可编程控制器型号都内置RJ45以太网口 (10/100 Mbps,MDI/MDIX) ,支
持 Ethernet TCP Modbus、Ethernet IP Device、SoMachine V2.0通过以太网、UDP、TCP 和 SNMP 协议。
所有 M258 可编程控制器都内置 Web Server和FTP Server。
并且基于MAC地址的默认地址,可以通过DHCP服务器或BOOTP服务器为控制器分配IP地址。
CANopen
视具体的型号,M258可编程控制器拥有内置CANopen主站。
可以在125kbps和1Mbps之间配置该总线,多支持63个从设备。
利用基于CANopen 的架构,可以用于连接分布式I/O模块,使传感器和执行器能够实
现就近连接,从而节省接线成本和时间,并且可以与不同的设备通信,例如变频器、伺服驱动器等。
CANopen组态工具集成到SoMachine V2.0软件中,也可以用于导入EDS格式的标准描述文件。
Modbus串行链路
所有M258施耐德PLC都标配可配置为RS232/RS485 的串行链路(标配),并且集成两种使用广的协议:
□主或从 Modbus ASCII/RTU
□字符串 (ASCII)
部分“步序”画面不刷新。经过对这些问题分析,分别对modsoft中逻辑、intouch中设置和mbplus组态设置重新处理,现在软件出现问题基本都已经处理正常。
5 控制系统改进
随着计算机软硬件技术的发展,人们对工业自动化的要求也越来越高。过去由于控制系统的硬件的限制,人们考虑的是实现过程控制中的控制策略,现今控制系统的前端控制器已经基本达到各种生产场合下的控制需要。用户的注意力也转移到了如何更有效的管理生产现场控制系统,尤其是在工厂生产控制系统,在使用先进的控制系统的基础上提高生产效率,控制系统的可靠性已经成为衡量控制系统的重要指标。在主机控制系统上重视促进了dcs发展迅速。由于人们对辅助系统长期认识重要性不够,无论在设计、安装上明显与主控系统相差很大,这给投产后运行维护检修带来了不少困难,大量资金投入效果不显著。结合现场实际对辅助系统提出以下几点建议。
5.1 网络控制技术
对电厂辅助系统采用网络控制技术,就能实现相对的集中控制,减少值班点,提高辅机设备的自动化的监控水平,解决以往电厂中辅助系统控制技术落后于主系统的现象和实现设计时提出无人值班要求。全厂建立基于quantum系列plc控制结构的辅助系统集中控制网,采用网络控制范围:
(1) 化学监控网络控制系统:在化学补给水处理控制室设置二台工控制机,相互备用,主干mb+网络上共设置了7个plc分站。
把#1~2机组凝结水水精处理与#1~2机组汽水取样采集系统及其加药控制作为系统网络一个分布式i/o分站;
把#3、4机组的组凝结水水精处理、再生系统和汽水取样采集系统及其加药控制作为系统网络一个分布式i/o分站;
把制氢站作为系统网络一个分布式i/o分站,可以设置一台本地监控工控机和双cpu热备;
把化学补给水处理为系统网络一个分布式i/o分站;
循环水处理plc系统统分布式i/o分站;
化学废水处理控制系统分布式i/o分站;
生活污水处理控制系统分布式i/o分站。
(2)在#1、2和#3、4除灰渣控制室各设置二台工控机,主干mb+网络上各设置二个plc控制分站,除灰除渣系统采用双机热备的远程i/or控制方式。把#1、2除灰、除渣、电除尘系统同一一体作为系统网络一个分布式i/o分站,把#3、4除灰、除渣、电除尘系统统一一体作为系统网络一个分布式i/o分站。
(3)输煤网络控制系统:在输煤控制室设置二台工控机,设置四个plc控制分站。其中输煤控制系统是采用双机热备远程i/o控制系统方式,包含了四个辅助工艺系统:
输煤控制系统;
油污水处理控制系统;
煤废水处理控制系统;
燃油泵房控制系统。
系统结构图见图4。
图4 辅助系统plc网络控制图
5.2 中继器提高网络性能
辅助系统环境差,通讯网络采用抗干扰能力强通讯线路比如带屏蔽的rj45双绞线或光缆,采用中继器提高网络性能,一般不采用淘汰的同轴电缆。rj45双绞线或光缆通讯速率快、故障率低,也比工业串口rs485性能好、通讯速率快。
5.3 执行机构
辅助系统室外部分应采用性能好的执行机构、各传感元件设备,配置防风吹、日晒、冷热、雨雪等设施,减少环境因素影响,提高控制系统工况。
5.4 控制系统电源
重视辅助系统控制系统电源,应采用性能好、容量至少有30%余量的ups供电,其双路电源接在不同母线上。防止因电源系统影响plc控制稳定。
1 引言
水位测控装置是水电厂的重要测控设备,水电厂的上下游水位是防汛安全的重要数据,拦污栅压差影响机组出力、水工建筑安全,水头值影响调速器协联曲线,进而影响机组效率甚至安全稳定运行,水位测控装置需满足长期稳定可靠运行。目前的水电厂水位测控装置普遍采用定制仪表采集前端水位传感器的格雷码值,换算栅差、水头等,输出开关信号报警,输出出4~20ma信号至监控、远动、调速器。在运行维护中存在以下问题:采用电缆长距离输送格雷码信号,防雷、抗干扰能力差,仪表、传感器易损坏;4个24位格雷码传感器需100芯电缆维护困难;定制的仪表扩展性差,输入、输出校准,参数整定操作复杂;价格高,备品备件采购困难。开发基于通用硬件设备的水位测控装置意义重大。
根据水电厂水位测控具体要求,我们自主设计了基于plc的水位测控系统,具有高可靠性、配置灵活、安装维护简单方便特点。
2 系统功能结构
水东水电站装设有上游、#1拦污栅后、#2拦污栅后、下游四个水位测量井,配置浮子式水位测量装置,采用值光电编码器将水位信息转换成数字信号。坝上传感器距离中控室500m,下游传感器距离中控室30m,为提高系统的防雷、抗干扰能力,坝上传感器通信采用光纤传输。水位测控装置plc通过rs485串行口采集编码器水位数据,经过换算处理模拟量输出模块输出4~20ma的上游、下游海拔值信号至远动rtu装置,输出4~20ma的水头信号至机组调速器电气调节装置。计算机监控系统通过网络连接水位测控装置plc,采集所有水位信息,故障报警信号等,并可远程设置相关参数、定值,系统功能结构如图1所示。
图1 系统功能结构图
3 实现原理
3.1 浮子式水位测量装置
该装置安装在测井口上方,当液位变化时,浮子随之上升或下降,测绳带动线轮做旋转运动,与线轮同轴连接的多圈值编码器就输出与液位对应的数字信号(见图2)。装置具有结构简单、合理,可靠性高、适应性强等优点,能够长期用于液位测量。
图2 浮子式水位测量装置
3.2 编码器
根据现场实际需求,编码器选用现场总线型输出的多圈值编码器。
值编码器由机械位置确定编码,每个编码唯一不重复,它不受停电、干扰的影响,无需记忆,无需找参考点,不用一直计数,什么时候需要知道位置,什么时候就去读取,这样,编码器的抗干扰特性、数据的可靠性大大提高了。多圈值编码器另一个优点是由于测量范围大,实际使用往往富余较多,这样在安装调试时不必费劲找零点,将在测量范围内的某一中间位置作为起始点就可以了,从而大大简化了安装调试难度。
编码器信号输出主要有并行格雷码输出、串行ssi输出、总线型输出、模拟量4~20ma输出。并行格雷码和模拟量输出信号读取简单但不适合长距离传输,串行ssi输出大部分是与西门子plc的ssi模块配套成本较高。现场总线型编码器用通讯方式传输信号,信号遵循rs485的物理格式,连接线少,传输距离远,对于编码器的保护和可靠性就提高了。信号的接收设备只需一个接口,就可以读多个编码器信号,多个编码器集中控制的情况下可以大大节省成本。
3.3 水位测控装置plc
plc选用m340模块化plc,它是施耐德公司生产的性能价格比很高的可编程控制器,已广泛应用于工业控制的各个领域。cpu模块选用高性能、大内存的bmx p34 2020,带一个100m以太网、一个485串行口;输入、输出模块可根据现场实际需求灵活配置。
4 软件设计
4.1 编程步骤
plc的硬件配置、控制程序采用施奈德的编程软件包unity pro完成,pc通过网络或usb与m340 plc进行程序传送。进行plc硬件组态,含底版、电源、cpu、输入输出模块等。通过电源模块属性可查看电源使用情况,应保留一定余量,否则需更换容量更大的电源模块;在cpu模块的serialport口配置串行链路参数如:485 modbus主站、波特率9600、帧延时4ms、数据位8位、停止位1位、偶校验;创建网络链路ethernet1并配置ip地址等网络通信参数,将cpu模块的ethernet口链接到网络链路ethernet1;根据现场模拟量信号要求配置模拟量输出模块参数;定义相关变量等。
4.2 plc程序设计
(1)程序结构。程序采用模块化设计,具有较高可读性、可维护性其程序结构如图3所示。
图3 程序结构图
(2)程序注释。plc上电扫描执行初始化init()子程序,初始化通信参数,上、下游海拔预置值,各个传感器调零值,拦污栅压差整定值等。
传感器通信comm()子程序,分时读取传感器水位值,通信故障时水位保持原值。
计算calc()子程序,计算出上、下游,拦污栅后的实际海拔值,拦污栅压差、各机组有效水头等。
信号输出out()子程序,拦污栅压差过大报警、通信故障报警、装置故障报警、4~20ma模拟量输出等。
数据上送sent()子程序,根据监控上位机通信规约,组织上送数据信文,含各实际海拔值、有效水头、详细故障信息、拦污栅压差报警定值等。
4.3 水位信号读取
m340 plc和编码器串行rs485通信采用modbus rtu通信规约,这个通讯协议已广泛被国内外各行业作为系统集成的一种通用工业标准协议,有利于系统的维护和扩展。plc为主站,编码器为从站。
查编码器技术手册,水位测值的modbus地址是4x0000,根据modbus通信规约信息帧结构读取地址 1 传感器的水位测量值,应发送以下通信码:m340 plc读取水位信息主要用read_var功能模块:
01 030000 0001 840a
站地址 功能码 首地址 个数 crc校验码
功能模块说明[1]
adr
通信地址:语法为 addm (`r.m.c.node`机架号.模块号.通道号.站地址) 类型。
obj 要读取的对象类型
’%m’:内部位
’%mw’:内部字
’%s’:系统位
’%sw’:系统字
num 读取的个对象的索引。
nb 要读取的对象的数量。
recp输出参数包含所读取对象的值的字表。
gest交换管理表:4个字的数组。
表1 交换管理表
图4 read_var功能模块
图4中read_var功能模块实现将地址1传感器水位值送入%mw1,交换管理表置于%mw400:4,%mw401==0,说明通信成功,非零值记录故障代码。通信过程需占用一定时间,保证通信可靠,防止通信阻塞,4个传感器通信分时进行,用上升沿触发。读取交换管理表确认通信是否成功,通信失败应将故障代码上送上位机并报警,将水位值保持为上一次正确通信时读取的值。
4.4 上位机监控软件设计
上位机系统与plc之间通过以太网连接,水东电厂的计算机监控系统采用南瑞集团公司的nc2000系统。nari nc2000计算机监控系统是南瑞集团面向水利水电领域的新一代计算机监控系统软件[2]。nc2000具有良好的人机界面和网络功能,与施耐德plc网络通信采用tcp/ip modbus规约。在组态环境下,设计人员对plc进行驱动配置,运行环境以图形画面形式的人机界面监控水位信息、故障报警,对有关数据存储历史库,生成报表,利用web功能使系统具有在线监控功能,即在授权的情况下在任何一台联网的计算机上用标准的浏览器可远程监控。限于篇幅,上位机程序不再详述。
5 结束语
系统的设计结构合理,采用多圈值编码器采集水位,以可编程控制器为控制核心,提高了系统的自动化程度,保证了系统运行的可靠性;硬件、软件模块化设计具有良好的扩展性和灵活性,可根据现场实际需求更改系统的配置规模。该系统在福建水东电站现场运行表明工作稳定,在监视报警、综合计算、信号输出等各方面满足电站的运行要求,取得了很好的效果,有较高的推广价值。